If M or N is an ideal or ring, it is regarded as a module in the evident way.
i1 : R = QQ[x,y]/(y^2-x^3); |
i2 : M = image matrix{{x,y}} o2 = image | x y | 1 o2 : R-module, submodule of R |
i3 : H = Hom(M,M) o3 = image {-1} | x y | {-1} | y x2 | 2 o3 : R-module, submodule of R |
To recover the modules used to create a Hom-module, use the function formation.
Specific homomorphisms may be obtained using homomorphism, as follows.
i4 : f0 = homomorphism H_{0} o4 = {1} | 1 0 | {1} | 0 1 | o4 : Matrix |
i5 : f1 = homomorphism H_{1} o5 = {1} | 0 x | {1} | 1 0 | o5 : Matrix |
In the example above, f0 is the identity map, and f1 maps x to y and y to x^2.