i1 : set{hi,you,there} * set{hi,us,here,you} o1 = set {hi, you} o1 : Set |
i2 : R = QQ[a..d]; |
i3 : a * {b,c,d} o3 = {a*b, a*c, a*d} o3 : List |
i4 : f = map(R,R,{b,c,a,d}) o4 = map (R, R, {b, c, a, d}) o4 : RingMap R <--- R |
i5 : g = map(R,R,{(a+b)^2,b^2,c^2,d^2}) 2 2 2 2 2 o5 = map (R, R, {a + 2a*b + b , b , c , d }) o5 : RingMap R <--- R |
i6 : f*g 2 2 2 2 2 o6 = map (R, R, {b + 2b*c + c , c , a , d }) o6 : RingMap R <--- R |
i7 : (f*g)(a) == f(g(a)) o7 = true |
i8 : M = R^2; I = ideal(a+b,c); o9 : Ideal of R |
i10 : N = I*M + a*R^2 o10 = image | a+b 0 c 0 a 0 | | 0 a+b 0 c 0 a | 2 o10 : R-module, submodule of R |
i11 : isHomogeneous N o11 = true |
If one of the factors is an RRi, the output is an interval containing all poducts of pairs in the factors.
i12 : 2*interval(1,3) o12 = [2,6] o12 : RRi (of precision 53) |
i13 : interval(1,3)*interval(-1,2) o13 = [-3,6] o13 : RRi (of precision 53) |
i14 : interval(-1,1)*interval(-1,1) o14 = [-1,1] o14 : RRi (of precision 53) |
This operator may be used as a binary operator in an expression like x*y. The user may install binary methods for handling such expressions with code such as
X * Y := (x,y) -> ...
where X is the class of x and Y is the class of y.
This operator may be used as a prefix unary operator in an expression like *y. The user may install a method for handling such expressions with code such as
* Y := (y) -> ...
where Y is the class of y.