i1 : R = QQ[a..h]; |
i2 : I = minors(2,genericMatrix(R,a,2,4)) o2 = ideal (- b*c + a*d, - b*e + a*f, - d*e + c*f, - b*g + a*h, - d*g + c*h, ------------------------------------------------------------------------ - f*g + e*h) o2 : Ideal of R |
i3 : inI = ideal leadTerm I o3 = ideal (f*g, d*g, b*g, d*e, b*e, b*c) o3 : Ideal of R |
i4 : independentSets I o4 = {a*b*d*f*h, a*c*d*f*h, a*c*e*f*h, a*c*e*g*h} o4 : List |
i5 : independentSets inI o5 = {a*b*d*f*h, a*c*d*f*h, a*c*e*f*h, a*c*e*g*h} o5 : List |
i6 : I = ideal"abc,bcd,cde,adf,cgh,b3f,a3g" 3 3 o6 = ideal (a*b*c, b*c*d, c*d*e, a*d*f, c*g*h, b f, a g) o6 : Ideal of R |
i7 : minimalPrimes I o7 = {ideal (c, b, a), ideal (f, c, a), ideal (g, d, b), ideal (g, e, b, a), ------------------------------------------------------------------------ ideal (g, f, c), ideal (g, f, d, a), ideal (g, f, e, b), ideal (h, d, b, ------------------------------------------------------------------------ a), ideal (h, e, b, a), ideal (h, f, d, a)} o7 : List |
i8 : independentSets I o8 = {a*b*d*e*h, a*c*e*f*h, b*d*e*g*h, d*e*f*g*h} o8 : List |
i9 : L = independentSets(I, Limit=>1) o9 = {a*b*d*e*h} o9 : List |
i10 : support L_0 o10 = {a, b, d, e, h} o10 : List |
i11 : rsort toList(set gens R - set support L_0) o11 = {c, f, g} o11 : List |
The object independentSets is a method function with options.