i1 : ZZ/2[t]; |
i2 : isPrime(t^2+t+1) o2 = true |
i3 : isPrime(t^2+1) o3 = false |
i4 : isPrime 101 o4 = true |
i5 : isPrime 158174196546819165468118574681196546811856748118567481185669501856749 o5 = true |
i6 : isPrime 158174196546819165468118574681196546811856748118567481185669501856749^2 o6 = false |
Since factor returns factors guaranteed only to be pseudoprimes, it may be useful to check their primality, as follows.
i7 : f = factor 28752093487520394720397634653456 4 o7 = 2 109*1831*3014311519*2987077659845341 o7 : Expression of class Product |
i8 : peek'_2 f o8 = Product{Power{2, 4}, Power{109, 1}, Power{1831, 1}, Power{3014311519, ------------------------------------------------------------------------ 1}, Power{2987077659845341, 1}} |
i9 : first \ toList f o9 = {2, 109, 1831, 3014311519, 2987077659845341} o9 : List |
i10 : isPrime \ oo o10 = {true, true, true, true, true} o10 : List |
Primality testing for integers is handled by FLINT.
The object isPrime is a method function with options.