The ideal is defined in the polynomial ring $R$, which must have at least $n+1$ variables, preferably all of equal degree. The first $n+1$ variables in the ring are used.
i1 : R = ZZ/101[a..f] o1 = R o1 : PolynomialRing |
i2 : monomialCurveIdeal(R, {3, 5}) 5 2 3 o2 = ideal(b - a c ) o2 : Ideal of R |
i3 : monomialCurveIdeal(R, {3, 4, 5}) 2 2 2 3 o3 = ideal (c - b*d, b c - a*d , b - a*c*d) o3 : Ideal of R |
i4 : monomialCurveIdeal(R, {6, 7, 8, 9, 11}) 2 2 2 2 o4 = ideal (e - c*f, d*e - b*f, d - c*e, c*d - b*e, c - b*d, b*c*e - a*f , ------------------------------------------------------------------------ 2 2 3 b d - a*e*f, b c - a*d*f, b - a*c*f) o4 : Ideal of R |
i5 : monomialCurveIdeal(R, {1, 3, 4}) 3 2 2 2 3 2 o5 = ideal (b*c - a*d, c - b*d , a*c - b d, b - a c) o5 : Ideal of R |
The object monomialCurveIdeal is a function closure.