If only one degree (as integer, or list of integers) is given for targetBox or sourceBox, then only rows or columns that match that exact degree are used.
i1 : R = QQ[a..d]; |
i2 : I = ideal"a2b-c3,abc-d3,ac2-bd2-cd2,abcd-c4" 2 3 3 2 2 2 4 o2 = ideal (a b - c , a*b*c - d , a*c - b*d - c*d , - c + a*b*c*d) o2 : Ideal of R |
i3 : C = res I; |
i4 : m = C.dd_2 o4 = {3} | ac2-bd2-cd2 0 -abc+d3 0 -a3c+a2cd {3} | 0 ac2-bd2-cd2 a2b-c3 -acd+cd2 a4-a3d-acd2+cd3 {3} | -a2b+c3 -abc+d3 0 abd-bd2 -a2c2+ac2d-acd2+cd3 {4} | 0 0 0 b2+bc-cd a3-bcd-c2d-cd2 ------------------------------------------------------------------------ -a3c+a2cd a4-a3d+a2cd-3acd2-ad3+2cd3+d4 -a2c2-a2bd+ac2d+2abd2-acd2-bd3+cd3 a3-ab2+b2d+acd-c2d-2cd2-d3 ------------------------------------------------------------------------ -a3c+a2cd a4-a3d+a2cd-3acd2-ad3+2cd3+d4 -a2c2-a2bd+ac2d+2abd2-acd2-ad3-bd3+cd3+d4 a3-ab2+ac2+b2d+acd-c2d-bd2-3cd2-d3 ------------------------------------------------------------------------ -a2bc+a2cd-acd2+d4 a2cd-acd2 | a3b-a3d+abcd+ac2d+a2d2-2bcd2-c2d2-bd3-cd3 -a3d+ac2d+a2d2-c2d2 | -abc2-ab2d-abcd+ac2d+b2d2-c2d2+cd3+d4 -abcd+ac2d+bcd2-c2d2 | a2b-b3-b2c+bc2-a2d+bcd -b2c+c3-a2d+c2d | 4 9 o4 : Matrix R <--- R |
i5 : submatrixByDegrees(m, 3, 6) o5 = {3} | ac2-bd2-cd2 0 -abc+d3 0 | {3} | 0 ac2-bd2-cd2 a2b-c3 -acd+cd2 | {3} | -a2b+c3 -abc+d3 0 abd-bd2 | 3 4 o5 : Matrix R <--- R |
i6 : submatrixByDegrees(m, (3,3), (6,7)) o6 = {3} | ac2-bd2-cd2 0 -abc+d3 0 -a3c+a2cd {3} | 0 ac2-bd2-cd2 a2b-c3 -acd+cd2 a4-a3d-acd2+cd3 {3} | -a2b+c3 -abc+d3 0 abd-bd2 -a2c2+ac2d-acd2+cd3 ------------------------------------------------------------------------ -a3c+a2cd a4-a3d+a2cd-3acd2-ad3+2cd3+d4 -a2c2-a2bd+ac2d+2abd2-acd2-bd3+cd3 ------------------------------------------------------------------------ -a3c+a2cd a4-a3d+a2cd-3acd2-ad3+2cd3+d4 -a2c2-a2bd+ac2d+2abd2-acd2-ad3-bd3+cd3+d4 ------------------------------------------------------------------------ -a2bc+a2cd-acd2+d4 a2cd-acd2 | a3b-a3d+abcd+ac2d+a2d2-2bcd2-c2d2-bd3-cd3 -a3d+ac2d+a2d2-c2d2 | -abc2-ab2d-abcd+ac2d+b2d2-c2d2+cd3+d4 -abcd+ac2d+bcd2-c2d2 | 3 9 o6 : Matrix R <--- R |
i7 : submatrixByDegrees(m, (4,4), (7,7)) o7 = {4} | a3-bcd-c2d-cd2 a3-ab2+b2d+acd-c2d-2cd2-d3 ------------------------------------------------------------------------ a3-ab2+ac2+b2d+acd-c2d-bd2-3cd2-d3 a2b-b3-b2c+bc2-a2d+bcd ------------------------------------------------------------------------ -b2c+c3-a2d+c2d | 1 5 o7 : Matrix R <--- R |
For multidegrees, the interval is a box.
i8 : S = QQ[a..d, Degrees=>{2:{1,0},2:{0,1}}]; |
i9 : I = ideal(a*d^4, b^3, a^2*d^2, a*b*c*d^3) 4 3 2 2 3 o9 = ideal (a*d , b , a d , a*b*c*d ) o9 : Ideal of S |
i10 : C = res I 1 4 6 4 1 o10 = S <-- S <-- S <-- S <-- S <-- 0 0 1 2 3 4 5 o10 : ChainComplex |
i11 : m = C.dd_2 o11 = {3, 0} | 0 -a2d2 0 0 -acd3 -ad4 | {2, 2} | -d2 b3 -bcd 0 0 0 | {1, 4} | a 0 0 -bc 0 b3 | {2, 4} | 0 0 a d b2 0 | 4 6 o11 : Matrix S <--- S |
i12 : degrees target m o12 = {{3, 0}, {2, 2}, {1, 4}, {2, 4}} o12 : List |
i13 : degrees source m o13 = {{2, 4}, {5, 2}, {3, 4}, {2, 5}, {4, 4}, {4, 4}} o13 : List |
i14 : submatrixByDegrees(C.dd_2, ({2,2},{2,4}), ({2,2},{5,4})) o14 = {2, 2} | -d2 b3 -bcd 0 0 | {2, 4} | 0 0 a b2 0 | 2 5 o14 : Matrix S <--- S |
The degrees are taken from the target and source free modules, not from the matrix entries themselves.
The object submatrixByDegrees is a method function.