A subset of the ground set is called independent if it is contained in a basis, or equivalently, does not contain a circuit. This method returns all independent subsets of the ground set of a fixed size $s$. If no size $s$ is given, returns a list of all independent sets of M.
i1 : M = matroid({a,b,c,d},{{a,b},{a,c}}) o1 = a matroid of rank 2 on 4 elements o1 : Matroid |
i2 : independentSets(M, 2) o2 = {set {0, 1}, set {0, 2}} o2 : List |
i3 : netList independentSets M +----------+ o3 = |set {} | +----------+ |set {0} | +----------+ |set {1} | +----------+ |set {0, 1}| +----------+ |set {2} | +----------+ |set {0, 2}| +----------+ |
i4 : V = specificMatroid "vamos" o4 = a matroid of rank 4 on 8 elements o4 : Matroid |
i5 : I3 = independentSets(V, 3) o5 = {set {0, 1, 2}, set {0, 1, 4}, set {0, 2, 4}, set {1, 2, 4}, set {0, 1, ------------------------------------------------------------------------ 3}, set {0, 3, 4}, set {1, 3, 4}, set {0, 2, 3}, set {2, 3, 4}, set {1, ------------------------------------------------------------------------ 2, 3}, set {0, 1, 5}, set {0, 2, 5}, set {1, 2, 5}, set {0, 3, 5}, set ------------------------------------------------------------------------ {1, 3, 5}, set {2, 3, 5}, set {0, 4, 5}, set {1, 4, 5}, set {2, 4, 5}, ------------------------------------------------------------------------ set {3, 4, 5}, set {0, 1, 6}, set {0, 2, 6}, set {1, 2, 6}, set {0, 3, ------------------------------------------------------------------------ 6}, set {1, 3, 6}, set {2, 3, 6}, set {0, 4, 6}, set {1, 4, 6}, set {2, ------------------------------------------------------------------------ 4, 6}, set {3, 4, 6}, set {0, 5, 6}, set {1, 5, 6}, set {2, 5, 6}, set ------------------------------------------------------------------------ {3, 5, 6}, set {4, 5, 6}, set {0, 1, 7}, set {0, 2, 7}, set {1, 2, 7}, ------------------------------------------------------------------------ set {0, 3, 7}, set {1, 3, 7}, set {2, 3, 7}, set {0, 4, 7}, set {1, 4, ------------------------------------------------------------------------ 7}, set {2, 4, 7}, set {3, 4, 7}, set {0, 5, 7}, set {1, 5, 7}, set {2, ------------------------------------------------------------------------ 5, 7}, set {3, 5, 7}, set {4, 5, 7}, set {0, 6, 7}, set {1, 6, 7}, set ------------------------------------------------------------------------ {2, 6, 7}, set {3, 6, 7}, set {4, 6, 7}, set {5, 6, 7}} o5 : List |
i6 : #I3 o6 = 56 |