Returns one of the named matroids below.
Many of these matroids are interesting for their non-representability or duality properties:
i1 : F7 = specificMatroid "fano" o1 = a matroid of rank 3 on 7 elements o1 : Matroid |
i2 : all(F7_*, x -> areIsomorphic(matroid completeGraph 4, F7 \ {x})) o2 = true |
i3 : AG32 = specificMatroid "AG32" o3 = a matroid of rank 4 on 8 elements o3 : Matroid |
i4 : representationOf AG32 o4 = | 1 1 1 1 1 1 1 1 | | 0 0 0 0 1 1 1 1 | | 0 0 1 1 0 0 1 1 | | 0 1 0 1 0 1 0 1 | ZZ 4 ZZ 8 o4 : Matrix (--) <--- (--) 2 2 |
i5 : AG32 == dual AG32 o5 = true |
i6 : R10 = specificMatroid "R10" o6 = a matroid of rank 5 on 10 elements o6 : Matroid |
i7 : representationOf R10 o7 = | 1 0 0 0 0 1 1 0 0 1 | | 0 1 0 0 0 1 1 1 0 0 | | 0 0 1 0 0 0 1 1 1 0 | | 0 0 0 1 0 0 0 1 1 1 | | 0 0 0 0 1 1 0 0 1 1 | ZZ 5 ZZ 10 o7 : Matrix (--) <--- (--) 2 2 |
i8 : areIsomorphic(R10 \ set{0}, matroid completeMultipartiteGraph {3,3}) o8 = true |
Notice that the ground set is a subset of $\{0, ..., n-1\}$ rather than $\{1, ..., n\}$.
The object specificMatroid is a method function.