Given a monomial ideal I, this function computes the j-multiplicity of I following the method of Jeffries-MontaƱo.
i1 : R = QQ[x,y] o1 = R o1 : PolynomialRing |
i2 : I = (ideal"xy5,x2y3,x3y2")^4 4 20 5 18 6 17 6 16 7 15 8 14 7 14 8 13 9 12 o2 = ideal (x y , x y , x y , x y , x y , x y , x y , x y , x y , ------------------------------------------------------------------------ 10 11 8 12 9 11 10 10 11 9 12 8 x y , x y , x y , x y , x y , x y ) o2 : Ideal of R |
i3 : elapsedTime monjMult I -- 0.205095 seconds elapsed o3 = 192 |
i4 : elapsedTime jMult I -- 3.00474 seconds elapsed o4 = 192 |
The object monjMult is a method function.