MultirationalMap | MultirationalMap -- product of multi-rational maps

Synopsis

• Operator: |
• Usage:
Phi | Psi
• Inputs:
• Phi, , $\Phi:X \dashrightarrow Y$
• Psi, , $\Psi:X \dashrightarrow Z$
• Outputs:
• , the rational map $X \dashrightarrow Y\times Z$ defined by $p\mapsto (\Phi(p),\Psi(p))$; in other words, it is the map defined by the join of factor Phi with factor Psi

Description

 i1 : Phi = rationalMap({veronese(1,2,ZZ/33331)},Dominant=>true); o1 : MultirationalMap (dominant rational map from PP^1 to curve in PP^2) i2 : Psi = rationalMap {veronese(1,3,ZZ/33331)}; o2 : MultirationalMap (rational map from PP^1 to PP^3) i3 : (X,Y,Z) = (source Phi,target Phi,target Psi); i4 : Eta = Phi | Psi; o4 : MultirationalMap (rational map from X to Y x Z) i5 : Eta | Phi; o5 : MultirationalMap (rational map from X to Y x Z x Y) i6 : Phi | Psi | Eta; o6 : MultirationalMap (rational map from X to Y x Z x Y x Z) i7 : super oo; o7 : MultirationalMap (rational map from X to PP^2 x PP^3 x PP^2 x PP^3) i8 : rationalMap(oo,image oo); o8 : MultirationalMap (dominant rational map from X to curve in PP^2 x PP^3 x PP^2 x PP^3)