# multirationalMap(MultiprojectiveVariety,MultiprojectiveVariety) -- get the natural inclusion

## Synopsis

• Function: multirationalMap
• Usage:
rationalMap(X,Y)
multirationalMap(X,Y)
• Inputs:
• Y, , with $X\subseteq Y$ (after identifying the ambient spaces)
• Outputs:
• , the natural inclusion of $X$ into $Y$

## Description

 i1 : R = ZZ/101[a_0,a_1,b_0..b_2,Degrees=>{2:{1,0},3:{0,1}}], S = ZZ/101[c_0,c_1,d_0..d_2,Degrees=>{2:{1,0},3:{0,1}}] o1 = (R, S) o1 : Sequence i2 : I = ideal (random({0,1},R),random({1,1},R)), J = sub(I,vars S) o2 = (ideal (24b - 36b - 30b , - 29a b - 10a b + 19a b - 29a b + 19a b 0 1 2 0 0 1 0 0 1 1 1 0 2 ------------------------------------------------------------------------ - 8a b ), ideal (24d - 36d - 30d , - 29c d - 10c d + 19c d - 29c d 1 2 0 1 2 0 0 1 0 0 1 1 1 ------------------------------------------------------------------------ + 19c d - 8c d )) 0 2 1 2 o2 : Sequence i3 : X = projectiveVariety I, Y = projectiveVariety J o3 = (X, Y) o3 : Sequence i4 : rationalMap(X,ambient X); o4 : MultirationalMap (morphism from X to PP^1 x PP^2) i5 : rationalMap(X,Y); o5 : MultirationalMap (morphism from X to Y) i6 : stopIfError = false; i7 : rationalMap(ambient X,X) stdio:7:1:(3): error: not able to define a natural map between the two varieties