i1 : K = ZZ/1000003; |
i2 : X = PP_K^({1,1,2},{3,2,3}); o2 : ProjectiveVariety, 4-dimensional subvariety of PP^3 x PP^2 x PP^9 |
i3 : time p := point X -- used 0.0891976 seconds o3 = point of coordinates ([421369, 39917, -212481, 1],[-128795, -176966, 1],[3870, -390108, -496127, -308581, 46649, 164926, -446111, 48038, 415309, 1]) o3 : ProjectiveVariety, a point in PP^3 x PP^2 x PP^9 |
i4 : Y = random({2,1,2},X); o4 : ProjectiveVariety, hypersurface in PP^3 x PP^2 x PP^9 |
i5 : time q = point Y -- used 1.49096 seconds o5 = q o5 : ProjectiveVariety, a point in PP^3 x PP^2 x PP^9 |
i6 : assert(isSubset(p,X) and isSubset(q,Y)) |
The list of homogeneous coordinates can be obtained with the operator |-.
i7 : |- p o7 = ([421369, 39917, -212481, 1], [-128795, -176966, 1], [3870, -390108, ------------------------------------------------------------------------ -496127, -308581, 46649, 164926, -446111, 48038, 415309, 1]) o7 : Sequence |
i8 : |- q o8 = ([-122098, -220812, 33092, 1], [395730, 340415, 1], [177496, -288667, ------------------------------------------------------------------------ 250341, 392818, -498075, 14832, 97109, -330219, 201194, 1]) o8 : Sequence |