next
|
previous
|
forward
|
backward
| up |
top
|
index
|
toc
|
Macaulay2 website
MultiprojectiveVarieties
::
projectiveVariety(...,MinimalGenerators=>...)
projectiveVariety(...,MinimalGenerators=>...) -- whether to trim the ideal (intended for internal use only)
Synopsis
Usage:
projectiveVariety(I,MinimalGenerators=>false)
Description
Use this option only in the case you know that the ideal
I
is already trimmed.
Further information
Default value:
true
Function:
projectiveVariety
-- the closed multi-projective subvariety defined by a multi-homogeneous ideal
Option key:
MinimalGenerators
-- whether to compute minimal generators and return a trimmed set of generators
See also
projectiveVariety
-- the closed multi-projective subvariety defined by a multi-homogeneous ideal
projectiveVariety(...,Saturate=>...)
-- whether to compute the multi-saturation of the ideal (intended for internal use only)
Functions with optional argument named
MinimalGenerators
:
"associatedPrimes(...,MinimalGenerators=>...)"
-- see
associatedPrimes
-- find associated primes
"intersect(Ideal,Ideal,MinimalGenerators=>...)"
-- see
intersect(Ideal,Ideal)
-- compute an intersection of a sequence of ideals or modules
"intersect(Module,Module,MinimalGenerators=>...)"
-- see
intersect(Ideal,Ideal)
-- compute an intersection of a sequence of ideals or modules
"intersectInP(...,MinimalGenerators=>...)"
-- see
intersectInP(...,BasisElementLimit=>...)
-- Option for intersectInP
"decompose(Ideal,MinimalGenerators=>...)"
-- see
minimalPrimes
-- minimal primes of an ideal
"minimalPrimes(...,MinimalGenerators=>...)"
-- see
minimalPrimes
-- minimal primes of an ideal
"primaryDecomposition(...,MinimalGenerators=>...)"
-- see
primaryDecomposition
-- irredundant primary decomposition of an ideal
projectiveVariety(...,MinimalGenerators=>...)
-- whether to trim the ideal (intended for internal use only)
"quotient(...,MinimalGenerators=>...)"
-- see
quotient(Module,Module)
-- ideal or submodule quotient
"analyticSpread(...,MinimalGenerators=>...)"
-- see
reesIdeal(...,MinimalGenerators=>...)
-- Whether the saturation step returns minimal generators
"distinguished(...,MinimalGenerators=>...)"
-- see
reesIdeal(...,MinimalGenerators=>...)
-- Whether the saturation step returns minimal generators
"isLinearType(...,MinimalGenerators=>...)"
-- see
reesIdeal(...,MinimalGenerators=>...)
-- Whether the saturation step returns minimal generators
"isReduction(...,MinimalGenerators=>...)"
-- see
reesIdeal(...,MinimalGenerators=>...)
-- Whether the saturation step returns minimal generators
"minimalReduction(...,MinimalGenerators=>...)"
-- see
reesIdeal(...,MinimalGenerators=>...)
-- Whether the saturation step returns minimal generators
"multiplicity(...,MinimalGenerators=>...)"
-- see
reesIdeal(...,MinimalGenerators=>...)
-- Whether the saturation step returns minimal generators
"normalCone(...,MinimalGenerators=>...)"
-- see
reesIdeal(...,MinimalGenerators=>...)
-- Whether the saturation step returns minimal generators
"reesAlgebra(...,MinimalGenerators=>...)"
-- see
reesIdeal(...,MinimalGenerators=>...)
-- Whether the saturation step returns minimal generators
reesIdeal(...,MinimalGenerators=>...)
-- Whether the saturation step returns minimal generators
"specialFiber(...,MinimalGenerators=>...)"
-- see
reesIdeal(...,MinimalGenerators=>...)
-- Whether the saturation step returns minimal generators
"specialFiberIdeal(...,MinimalGenerators=>...)"
-- see
reesIdeal(...,MinimalGenerators=>...)
-- Whether the saturation step returns minimal generators
"saturate(...,MinimalGenerators=>...)"
-- see
saturate
-- saturation of ideal or submodule