Compute a set of Noetherian operators for the primary submodule U.
This method contains an implementation of Algorithm 4.1 in the paper Primary decomposition of modules: a computational differential approach. For more details, see Section 4 of the paper Primary decomposition of modules: a computational differential approach.
i1 : R = QQ[x_1,x_2,x_3] o1 = R o1 : PolynomialRing |
i2 : U = image matrix {{x_1, x_2^2, 0}, {x_3, x_3^2, x_2^2-x_1*x_3}} o2 = image | x_1 x_2^2 0 | | x_3 x_3^2 x_2^2-x_1x_3 | 2 o2 : R-module, submodule of R |
i3 : noetherianOperators U o3 = {| -x_3 |} | x_1 | o3 : List |