NoetherianOperators : Index
-
AllVisible -- numerically determine if the point is an embedded component of the scheme
-
amult -- Computes the arithmetic multiplicity of a module
-
amult(Ideal) -- Computes the arithmetic multiplicity of a module
-
amult(Module) -- Computes the arithmetic multiplicity of a module
-
colon -- colon of a (truncated) dual space
-
colon(...,Tolerance=>...) -- colon of a (truncated) dual space
-
colon(DualSpace,Ideal) -- colon of a (truncated) dual space
-
colon(DualSpace,RingElement) -- colon of a (truncated) dual space
-
coordinateChangeOps -- induced Noetherian operators under coordinate change
-
coordinateChangeOps(Matrix,DiffOp) -- induced Noetherian operators under coordinate change
-
coordinateChangeOps(Matrix,List) -- induced Noetherian operators under coordinate change
-
coordinateChangeOps(RingMap,DiffOp) -- induced Noetherian operators under coordinate change
-
coordinateChangeOps(RingMap,List) -- induced Noetherian operators under coordinate change
-
DependentSet -- option for computing Noetherian operators
-
differentialPrimaryDecomposition -- compute a differential primary decomposition
-
differentialPrimaryDecomposition(Ideal) -- compute a differential primary decomposition
-
differentialPrimaryDecomposition(Module) -- compute a differential primary decomposition
-
DiffOp -- differential operator
-
diffOp -- create a differential operator
-
DiffOp Matrix -- apply a differential operator
-
DiffOp RingElement -- apply a differential operator
-
diffOp(Matrix) -- create a differential operator
-
diffOp(RingElement) -- create a differential operator
-
diffOpRing -- create and cache the ring of differential operators
-
eliminatingDual -- eliminating dual space of a polynomial ideal
-
eliminatingDual(...,Tolerance=>...) -- optional argument for numerical tolernace
-
eliminatingDual(Point,Ideal,List,ZZ) -- eliminating dual space of a polynomial ideal
-
eliminatingDual(Point,Matrix,List,ZZ) -- eliminating dual space of a polynomial ideal
-
evaluate(DiffOp,Matrix) -- evaluate coefficients of a differential operator
-
evaluate(DiffOp,Point) -- evaluate coefficients of a differential operator
-
gCorners -- generators of the initial ideal of a polynomial ideal
-
gCorners(...,StandardBasis=>...) -- generators of the initial ideal of a polynomial ideal
-
gCorners(...,Tolerance=>...) -- optional argument for numerical tolernace
-
gCorners(Point,Ideal) -- generators of the initial ideal of a polynomial ideal
-
gCorners(Point,Matrix) -- generators of the initial ideal of a polynomial ideal
-
getIdealFromNoetherianOperators -- Computes a primary ideal corresponding to a list of Noetherian operators and a prime ideal
-
getIdealFromNoetherianOperators(List,Ideal) -- Computes a primary ideal corresponding to a list of Noetherian operators and a prime ideal
-
getModuleFromNoetherianOperators -- Computes a primary submodule corresponding to a list of Noetherian operators and a prime ideal
-
getModuleFromNoetherianOperators(Ideal,List) -- Computes a primary submodule corresponding to a list of Noetherian operators and a prime ideal
-
hilbertFunction(DualSpace)
-
hilbertFunction(List,DualSpace)
-
hilbertFunction(ZZ,DualSpace)
-
IntegralStrategy -- strategy for computing Noetherian operators
-
InterpolationDegreeLimit -- Noetherian operators via numerical interpolation
-
InterpolationTolerance -- Noetherian operators via numerical interpolation
-
isPointEmbedded -- numerically determine if the point is an embedded component of the scheme
-
isPointEmbedded(...,AllVisible=>...) -- numerically determine if the point is an embedded component of the scheme
-
isPointEmbedded(Point,Ideal,List) -- numerically determine if the point is an embedded component of the scheme
-
isPointEmbeddedInCurve -- numerically determine if the point is an embedded component of a 1-dimensional scheme
-
isPointEmbeddedInCurve(...,Regularity=>...) -- numerically determine if the point is an embedded component of a 1-dimensional scheme
-
isPointEmbeddedInCurve(Point,Ideal) -- numerically determine if the point is an embedded component of a 1-dimensional scheme
-
joinIdeals -- Computes the join of two ideals
-
joinIdeals(Ideal,Ideal) -- Computes the join of two ideals
-
KernelStrategy -- strategy for computing Noetherian operators
-
localHilbertRegularity -- regularity of the local Hilbert function of a polynomial ideal
-
localHilbertRegularity(...,Tolerance=>...) -- optional argument for numerical tolernace
-
localHilbertRegularity(Point,Ideal) -- regularity of the local Hilbert function of a polynomial ideal
-
localHilbertRegularity(Point,Matrix) -- regularity of the local Hilbert function of a polynomial ideal
-
mapToPunctualHilbertScheme -- maps an ideal into a point in a certain punctual Hilbert scheme
-
mapToPunctualHilbertScheme(Ideal) -- maps an ideal into a point in a certain punctual Hilbert scheme
-
NoetherianDegreeLimit -- Noetherian operators via numerical interpolation
-
NoetherianOperators -- algorithms for computing local dual spaces and sets of Noetherian operators
-
noetherianOperators -- Noetherian operators
-
noetherianOperators(Ideal) -- Noetherian operators of a primary ideal
-
noetherianOperators(Ideal,Ideal) -- Noetherian operators of a primary component
-
noetherianOperators(Module) -- Noetherian operators of a primary submodule
-
noetherianOperators(Module,Ideal) -- Noetherian operators of a primary component
-
noethOpsFromComponents -- merge Noetherian operators for non-primary ideals
-
noethOpsFromComponents(List) -- merge Noetherian operators for non-primary ideals
-
normalize -- rescale a differential operator
-
normalize(DiffOp) -- rescale a differential operator
-
numericalNoetherianOperators -- Noetherian operators via numerical interpolation
-
numericalNoetherianOperators(Ideal) -- Noetherian operators via numerical interpolation
-
orthogonalInSubspace -- Orthogonal of a space
-
orthogonalInSubspace(DualSpace,PolySpace,Number) -- Orthogonal of a space
-
orthogonalInSubspace(PolySpace,PolySpace,Number) -- Orthogonal of a space
-
pairingMatrix -- Applies dual space functionals to polynomials
-
pairingMatrix(PolySpace,DualSpace) -- Applies dual space functionals to polynomials
-
pairingMatrix(PolySpace,PolySpace) -- Applies dual space functionals to polynomials
-
pairingMatrix(PolySpace,RingElement) -- Applies dual space functionals to polynomials
-
pairingMatrix(RingElement,DualSpace) -- Applies dual space functionals to polynomials
-
pairingMatrix(RingElement,RingElement) -- Applies dual space functionals to polynomials
-
Rational -- Noetherian operators of a primary component
-
rationalInterpolation -- numerically interpolate rational functions
-
rationalInterpolation(...,Tolerance=>...) -- optional argument for numerical tolernace
-
rationalInterpolation(List,List,Matrix) -- numerically interpolate rational functions
-
rationalInterpolation(List,List,Matrix,Matrix) -- numerically interpolate rational functions
-
rationalInterpolation(List,List,Ring) -- numerically interpolate rational functions
-
Regularity -- numerically determine if the point is an embedded component of a 1-dimensional scheme
-
Sampler -- optional sampler function
-
solvePDE -- solve linear systems of PDE with constant coefficients
-
solvePDE(Ideal) -- solve linear systems of PDE with constant coefficients
-
solvePDE(Matrix) -- solve linear systems of PDE with constant coefficients
-
solvePDE(Module) -- solve linear systems of PDE with constant coefficients
-
specializedNoetherianOperators -- Noetherian operators evaluated at a point
-
specializedNoetherianOperators(Ideal,Matrix) -- Noetherian operators evaluated at a point
-
specializedNoetherianOperators(Ideal,Point) -- Noetherian operators evaluated at a point
-
StandardBasis -- generators of the initial ideal of a polynomial ideal
-
Strategy => "Hybrid" -- strategy for computing Noetherian operators
-
Strategy => "MacaulayMatrix" -- strategy for computing Noetherian operators
-
Strategy => "PunctualQuot" -- strategy for computing Noetherian operators
-
Tolerance (NoetherianOperators) -- optional argument for numerical tolernace
-
truncate(DualSpace,List,ZZ) -- truncate a polynomial space or dual space
-
truncate(DualSpace,ZZ) -- truncate a polynomial space or dual space
-
truncate(PolySpace,List,ZZ) -- truncate a polynomial space or dual space
-
truncate(PolySpace,ZZ) -- truncate a polynomial space or dual space
-
truncatedDual -- truncated dual space of a polynomial ideal
-
truncatedDual(...,Tolerance=>...) -- optional argument for numerical tolernace
-
truncatedDual(Matrix,Ideal,ZZ) -- truncated dual space of a polynomial ideal
-
truncatedDual(Matrix,Matrix,ZZ) -- truncated dual space of a polynomial ideal
-
truncatedDual(Point,Ideal,ZZ) -- truncated dual space of a polynomial ideal
-
truncatedDual(Point,Matrix,ZZ) -- truncated dual space of a polynomial ideal
-
TrustedPoint -- Noetherian operators via numerical interpolation
-
zeroDimensionalDual -- dual space of a zero-dimensional polynomial ideal
-
zeroDimensionalDual(...,Tolerance=>...) -- optional argument for numerical tolernace
-
zeroDimensionalDual(Matrix,Ideal) -- dual space of a zero-dimensional polynomial ideal
-
zeroDimensionalDual(Matrix,Matrix) -- dual space of a zero-dimensional polynomial ideal
-
zeroDimensionalDual(Point,Ideal) -- dual space of a zero-dimensional polynomial ideal
-
zeroDimensionalDual(Point,Matrix) -- dual space of a zero-dimensional polynomial ideal