The Picard group of a normal toric variety is a subgroup of the class group. This function returns a matrix representing this map with respect to the chosen bases.
On a smooth normal toric variety, the Picard group is isomorphic to the class group, so the inclusion map is the identity.
i1 : PP3 = toricProjectiveSpace 3; |
i2 : assert (isSmooth PP3 and isProjective PP3) |
i3 : fromPicToCl PP3 o3 = | 1 | 1 1 o3 : Matrix ZZ <--- ZZ |
i4 : assert (fromPicToCl PP3 === id_(classGroup PP3)) |
i5 : X = smoothFanoToricVariety (4,90); |
i6 : assert (isSmooth X and isProjective X and isFano X) |
i7 : fromPicToCl X o7 = | 1 0 0 0 0 | | 0 1 0 0 0 | | 0 0 1 0 0 | | 0 0 0 1 0 | | 0 0 0 0 1 | 5 5 o7 : Matrix ZZ <--- ZZ |
i8 : assert (fromPicToCl X === id_(classGroup X)) |
i9 : U = normalToricVariety ({{4,-1},{0,1}},{{0},{1}}); |
i10 : assert (isSmooth U and not isComplete U and # max U =!= 1) |
i11 : fromPicToCl U o11 = | 1 | o11 : Matrix |
i12 : assert (fromPicToCl U === id_(classGroup U)) |
For weighted projective space, the inclusion corresponds to $l \ZZ$ in $\ZZ$ where $l = lcm(q_0, q_1, \dots, q_d {})$.
i13 : P123 = weightedProjectiveSpace {1,2,3}; |
i14 : assert (isSimplicial P123 and isProjective P123) |
i15 : fromPicToCl P123 o15 = | 6 | 1 1 o15 : Matrix ZZ <--- ZZ |
i16 : assert (fromPicToCl P123 === lcm (1,2,3) * id_(classGroup P123)) |
i17 : P12234 = weightedProjectiveSpace {1,2,2,3,4}; |
i18 : assert (isSimplicial P12234 and isProjective P12234) |
i19 : fromPicToCl P12234 o19 = | 12 | 1 1 o19 : Matrix ZZ <--- ZZ |
i20 : assert (fromPicToCl P12234 === lcm (1,2,2,3,4) * id_(classGroup P12234)) |
The following examples illustrate some other possibilities.
i21 : Q = normalToricVariety ({{1,0,0},{0,1,0},{0,0,1},{1,1,-1}},{{0,1,2,3}}); |
i22 : assert (not isSimplicial Q and not isComplete Q and # max Q === 1) |
i23 : fromPicToCl Q o23 = 0 1 o23 : Matrix ZZ <--- 0 |
i24 : assert (fromPicToCl Q == 0) |
i25 : Y = normalToricVariety (id_(ZZ^3) | -id_(ZZ^3)); |
i26 : assert (not isSimplicial Y and isProjective Y) |
i27 : fromPicToCl Y o27 = | 0 | | 0 | | 0 | | 2 | | 2 | | 2 | | 2 | o27 : Matrix |
This map is computed and cached when the Picard group is first constructed.