A Weil divisor is $\QQ$-Cartier if some positive integer multiple is Cartier.
On a simplicial toric variety, every torus-invariant Weil divisor is $\QQ$-Cartier.
i1 : W = weightedProjectiveSpace {2,5,7}; |
i2 : assert isSimplicial W |
i3 : assert not isCartier W_0 |
i4 : assert isQQCartier W_0 |
i5 : assert isCartier (35*W_0) |
In general, the $\QQ$-Cartier divisors form a proper subgroup of the Weil divisors.
i6 : X = normalToricVariety (id_(ZZ^3) | -id_(ZZ^3)); |
i7 : assert not isCartier X_0 |
i8 : assert not isQQCartier X_0 |
i9 : K = toricDivisor X; o9 : ToricDivisor on X |
i10 : assert isCartier K |