This function checks that the following aspects of the data structure:
i1 : PP2 = toricProjectiveSpace 2 o1 = PP2 o1 : NormalToricVariety |
i2 : D1 = toricDivisor ({2,-7,3}, PP2) o2 = 2*PP2 - 7*PP2 + 3*PP2 0 1 2 o2 : ToricDivisor on PP2 |
i3 : assert isWellDefined D1 |
i4 : debugLevel = 1; |
i5 : D2 = new ToricDivisor from hashTable { 0 => 2, symbol variety => PP2, symbol cache => new CacheTable}; o5 : ToricDivisor on PP2 |
i6 : assert not isWellDefined D2 -- missing key(s): {1, 2} |
i7 : D3 = new ToricDivisor from hashTable { 0 => 2, 1 => x, 2 => 3, symbol variety => PP2, symbol cache => new CacheTable}; o7 : ToricDivisor on PP2 |
i8 : assert not isWellDefined D3 expected 1-th coefficient to be an integer |
i9 : D4 = new ToricDivisor from hashTable { 0 => 2, 1 => -7, 2 => 3, symbol variety => 7, symbol cache => new CacheTable}; o9 : ToricDivisor on 7 |
i10 : assert not isWellDefined D4 expected a divisor over a normal toric variety |
The function expression(ToricDivisor) assumes that the input toric divisor is well-defined.