Peter Kleinschmidt constructs (up to isomorphism) all smooth normal toric varieties with dimension $d$ and $d+2$ rays; see Kleinschmidt's "A classification of toric varieties with few generators" Aequationes Mathematicae, 35 (1998) 254-266.
When $d = 2$, we obtain a variety isomorphic to a Hirzebruch surface. By permuting the indexing of the rays and taking an automorphism of the lattice, we produce an explicit isomorphism.
i1 : X = kleinschmidt (2,{3}); |
i2 : rays X o2 = {{-1, 0}, {1, 0}, {0, 1}, {3, -1}} o2 : List |
i3 : max X o3 = {{0, 2}, {0, 3}, {1, 2}, {1, 3}} o3 : List |
i4 : FF3 = hirzebruchSurface 3; |
i5 : rays FF3 o5 = {{1, 0}, {0, 1}, {-1, 3}, {0, -1}} o5 : List |
i6 : max FF3 o6 = {{0, 1}, {0, 3}, {1, 2}, {2, 3}} o6 : List |
i7 : permutingRays = matrix {{0,0,0,1},{0,1,0,0},{1,0,0,0},{0,0,1,0}} o7 = | 0 0 0 1 | | 0 1 0 0 | | 1 0 0 0 | | 0 0 1 0 | 4 4 o7 : Matrix ZZ <--- ZZ |
i8 : latticeAutomorphism = matrix {{0,1},{1,0}} o8 = | 0 1 | | 1 0 | 2 2 o8 : Matrix ZZ <--- ZZ |
i9 : assert (latticeAutomorphism * (matrix transpose rays X) * permutingRays == matrix transpose rays FF3) |
The normal toric variety associated to the pair $(d,a)$ is Fano if and only if $\sum_{i=0}^{r-1} a_i < d-r+1$.
i10 : X1 = kleinschmidt (3, {0,1}); |
i11 : isFano X1 o11 = true |
i12 : X2 = kleinschmidt (4, {0,0}); |
i13 : isFano X2 o13 = true |
i14 : ring X2 o14 = QQ[x ..x ] 0 5 o14 : PolynomialRing |
i15 : X3 = kleinschmidt (9, {1,2,3}, CoefficientRing => ZZ/32003, Variable => y); |
i16 : isFano X3 o16 = true |
i17 : ring X3 ZZ o17 = -----[y ..y ] 32003 0 10 o17 : PolynomialRing |
The map from the group of torus-invariant Weil divisors to the class group is chosen so that the positive orthant corresponds to the cone of nef line bundles.
i18 : nefGenerators X o18 = | 1 0 | | 0 1 | 2 2 o18 : Matrix ZZ <--- ZZ |
i19 : nefGenerators X1 o19 = | 1 0 | | 0 1 | 2 2 o19 : Matrix ZZ <--- ZZ |
i20 : nefGenerators X2 o20 = | 1 0 | | 0 1 | 2 2 o20 : Matrix ZZ <--- ZZ |
i21 : nefGenerators X3 o21 = | 1 0 | | 0 1 | 2 2 o21 : Matrix ZZ <--- ZZ |