This method makes a NormalToricVariety from a Fan as implemented in the Polyhedra package.
i1 : F = faceFan convexHull (id_(ZZ^3) | -id_(ZZ^3)) o1 = F o1 : Fan |
i2 : rays F o2 = | -1 1 0 0 0 0 | | 0 0 -1 1 0 0 | | 0 0 0 0 -1 1 | 3 6 o2 : Matrix ZZ <--- ZZ |
i3 : maxCones F o3 = {{0, 2, 4}, {1, 2, 4}, {0, 3, 4}, {1, 3, 4}, {0, 2, 5}, {1, 2, 5}, {0, ------------------------------------------------------------------------ 3, 5}, {1, 3, 5}} o3 : List |
i4 : X = normalToricVariety F; |
i5 : assert (transpose matrix rays X == rays F and max X == sort maxCones F) |
The recommended method for creating a NormalToricVariety from a fan is normalToricVariety(List,List). In fact, this package avoids using objects from the Polyhedra package whenever possible. Here is a trivial example, namely projective 2-space, illustrating the substantial increase in time resulting from the use of a Polyhedra fan.
i6 : X1 = time normalToricVariety ({{-1,-1},{1,0},{0,1}}, {{0,1},{1,2},{0,2}}) -- used 0.000029187 seconds o6 = X1 o6 : NormalToricVariety |
i7 : X2 = time normalToricVariety fan {posHull matrix {{-1,1},{-1,0}}, posHull matrix {{1,0},{0,1}}, posHull matrix{{-1,0},{-1,1}}}; -- used 0.115896 seconds |
i8 : assert (sort rays X1 == sort rays X2 and max X1 == max X2) |