NormalToricVarieties : Index
-
- ToricDivisor -- perform arithmetic on toric divisors
-
abstractSheaf(NormalToricVariety,AbstractVariety,CoherentSheaf) -- make the corresponding abstract sheaf
-
abstractSheaf(NormalToricVariety,AbstractVariety,ToricDivisor) -- make the corresponding abstract sheaf
-
abstractSheaf(NormalToricVariety,CoherentSheaf) -- make the corresponding abstract sheaf
-
abstractSheaf(NormalToricVariety,ToricDivisor) -- make the corresponding abstract sheaf
-
abstractVariety(NormalToricVariety) -- make the corresponding abstract variety
-
abstractVariety(NormalToricVariety,AbstractVariety) -- make the corresponding abstract variety
-
affineSpace -- make an affine space as a normal toric variety
-
affineSpace(...,CoefficientRing=>...) -- make an affine space as a normal toric variety
-
affineSpace(...,Variable=>...) -- make an affine space as a normal toric variety
-
affineSpace(ZZ) -- make an affine space as a normal toric variety
-
cartesianProduct -- make the Cartesian product of normal toric varieties
-
cartesianProduct(NormalToricVariety) -- make the Cartesian product of normal toric varieties
-
cartesianProduct(Sequence) -- make the Cartesian product of normal toric varieties
-
cartierDivisorGroup -- compute the group of torus-invariant Cartier divisors
-
cartierDivisorGroup(NormalToricVariety) -- compute the group of torus-invariant Cartier divisors
-
cartierDivisorGroup(ToricMap) -- make the induced map between groups of Cartier divisors.
-
ch(CoherentSheaf) -- compute the Chern character of a coherent sheaf
-
ch(ZZ,CoherentSheaf) -- compute the Chern character of a coherent sheaf
-
chern(CoherentSheaf) -- compute the Chern class of a coherent sheaf
-
chern(ZZ,CoherentSheaf) -- compute the Chern class of a coherent sheaf
-
chi(CoherentSheaf) -- compute the Euler characteristic of a coherent sheaf
-
Chow ring -- make the rational Chow ring
-
classGroup -- make the class group
-
classGroup(NormalToricVariety) -- make the class group
-
classGroup(ToricMap) -- make the induced map between class groups
-
components(NormalToricVariety) -- list the factors in a product
-
cotangentSheaf(NormalToricVariety) -- make the sheaf of Zariski 1-forms
-
cotangentSheaf(ZZ,NormalToricVariety) -- make the sheaf of Zariski 1-forms
-
Cox ring -- make the total coordinate ring (a.k.a. Cox ring)
-
ctop(CoherentSheaf) -- compute the top Chern class of a coherent sheaf
-
degree(ToricDivisor) -- make the degree of the associated rank-one reflexive sheaf
-
diagonalToricMap -- make a diagonal map into a Cartesian product
-
diagonalToricMap(NormalToricVariety) -- make a diagonal map into a Cartesian product
-
diagonalToricMap(NormalToricVariety,ZZ) -- make a diagonal map into a Cartesian product
-
diagonalToricMap(NormalToricVariety,ZZ,Array) -- make a diagonal map into a Cartesian product
-
dim(NormalToricVariety) -- get the dimension of a normal toric variety
-
divisor arithmetic -- perform arithmetic on toric divisors
-
entries(ToricDivisor) -- get the list of coefficients
-
expression(NormalToricVariety) -- get the expression used to format for printing
-
expression(ToricDivisor) -- get the expression used to format for printing
-
fan(NormalToricVariety) -- make the 'Polyhedra' fan associated to the normal toric variety
-
finding attributes and properties -- information about accessing features of a normal toric variety
-
fromCDivToPic -- get the map from Cartier divisors to the Picard group
-
fromCDivToPic(NormalToricVariety) -- get the map from Cartier divisors to the Picard group
-
fromCDivToWDiv -- get the map from Cartier divisors to Weil divisors
-
fromCDivToWDiv(NormalToricVariety) -- get the map from Cartier divisors to Weil divisors
-
fromPicToCl -- get the map from Picard group to class group
-
fromPicToCl(NormalToricVariety) -- get the map from Picard group to class group
-
fromWDivToCl -- get the map from the group of Weil divisors to the class group
-
fromWDivToCl(NormalToricVariety) -- get the map from the group of Weil divisors to the class group
-
HH^ZZ(NormalToricVariety,CoherentSheaf) -- compute the cohomology of a coherent sheaf
-
HH^ZZ(NormalToricVariety,SheafOfRings) -- compute the cohomology of a coherent sheaf
-
hilbertPolynomial(NormalToricVariety) -- compute the multivariate Hilbert polynomial
-
hilbertPolynomial(NormalToricVariety,CoherentSheaf) -- compute the multivariate Hilbert polynomial
-
hilbertPolynomial(NormalToricVariety,Ideal) -- compute the multivariate Hilbert polynomial
-
hilbertPolynomial(NormalToricVariety,Module) -- compute the multivariate Hilbert polynomial
-
hilbertPolynomial(NormalToricVariety,Ring) -- compute the multivariate Hilbert polynomial
-
hilbertPolynomial(NormalToricVariety,SheafOfRings) -- compute the multivariate Hilbert polynomial
-
hirzebruchSurface -- make any Hirzebruch surface
-
hirzebruchSurface(...,CoefficientRing=>...) -- make any Hirzebruch surface
-
hirzebruchSurface(...,Variable=>...) -- make any Hirzebruch surface
-
hirzebruchSurface(ZZ) -- make any Hirzebruch surface
-
id _ NormalToricVariety -- make the identity map from a NormalToricVariety to itself
-
ideal(NormalToricVariety) -- make the irrelevant ideal
-
ideal(ToricMap) -- make the ideal defining the closure of the image
-
inducedMap(ToricMap) -- make the induced map between total coordinate rings (a.k.a. Cox rings)
-
intersectionRing(NormalToricVariety) -- make the rational Chow ring
-
intersectionRing(NormalToricVariety,AbstractVariety) -- make the rational Chow ring
-
isAmple -- whether a torus-invariant Weil divisor is ample
-
isAmple(ToricDivisor) -- whether a torus-invariant Weil divisor is ample
-
isCartier -- whether a torus-invariant Weil divisor is Cartier
-
isCartier(ToricDivisor) -- whether a torus-invariant Weil divisor is Cartier
-
isComplete(NormalToricVariety) -- whether a toric variety is complete
-
isDegenerate -- whether a toric variety is degenerate
-
isDegenerate(NormalToricVariety) -- whether a toric variety is degenerate
-
isDominant -- whether a toric map is dominant
-
isDominant(ToricMap) -- whether a toric map is dominant
-
isEffective -- whether a torus-invariant Weil divisor is effective
-
isEffective(ToricDivisor) -- whether a torus-invariant Weil divisor is effective
-
isFano -- whether a normal toric variety is Fano
-
isFano(NormalToricVariety) -- whether a normal toric variety is Fano
-
isFibration -- whether a toric map is a fibration
-
isFibration(ToricMap) -- whether a toric map is a fibration
-
isNef -- whether a torus-invariant Weil divisor is nef
-
isNef(ToricDivisor) -- whether a torus-invariant Weil divisor is nef
-
isProjective -- whether a toric variety is projective
-
isProjective(NormalToricVariety) -- whether a toric variety is projective
-
isProper -- whether a toric map is proper
-
isProper(ToricMap) -- whether a toric map is proper
-
isQQCartier -- whether a torus-invariant Weil divisor is QQ-Cartier
-
isQQCartier(ToricDivisor) -- whether a torus-invariant Weil divisor is QQ-Cartier
-
isSimplicial(NormalToricVariety) -- whether a normal toric variety is simplicial
-
isSmooth(NormalToricVariety) -- whether a normal toric variety is smooth
-
isSurjective(ToricMap) -- whether a toric map is surjective
-
isVeryAmple(ToricDivisor) -- whether a torus-invariant Weil divisor is very ample
-
isWellDefined(NormalToricVariety) -- whether a toric variety is well-defined
-
isWellDefined(ToricDivisor) -- whether a toric divisor is well-defined
-
isWellDefined(ToricMap) -- whether a toric map is well defined
-
kleinschmidt -- make any smooth normal toric variety having Picard rank two
-
kleinschmidt(...,CoefficientRing=>...) -- make any smooth normal toric variety having Picard rank two
-
kleinschmidt(...,Variable=>...) -- make any smooth normal toric variety having Picard rank two
-
kleinschmidt(ZZ,List) -- make any smooth normal toric variety having Picard rank two
-
latticePoints(ToricDivisor) -- compute the lattice points in the associated polytope
-
makeSimplicial -- make a birational simplicial toric variety
-
makeSimplicial(...,Strategy=>...) -- make a birational simplicial toric variety
-
makeSimplicial(NormalToricVariety) -- make a birational simplicial toric variety
-
makeSmooth -- make a birational smooth toric variety
-
makeSmooth(...,Strategy=>...) -- make a birational smooth toric variety
-
makeSmooth(NormalToricVariety) -- make a birational smooth toric variety
-
making normal toric varieties -- information about the basic constructors
-
map(NormalToricVariety,NormalToricVariety,Matrix) -- make a torus-equivariant map between normal toric varieties
-
map(NormalToricVariety,NormalToricVariety,ZZ) -- make a torus-equivariant map between normal toric varieties
-
matrix(ToricMap) -- get the underlying map of lattices
-
max(NormalToricVariety) -- get the maximal cones in the associated fan
-
monomialIdeal(NormalToricVariety) -- make the irrelevant ideal
-
monomials(ToricDivisor) -- list the monomials that span the linear series
-
nefGenerators -- compute generators of the nef cone
-
nefGenerators(NormalToricVariety) -- compute generators of the nef cone
-
NormalToricVarieties -- working with normal toric varieties and related objects
-
NormalToricVariety -- the class of all normal toric varieties
-
normalToricVariety -- make a normal toric variety
-
NormalToricVariety ** NormalToricVariety -- make the Cartesian product of two normal toric varieties
-
NormalToricVariety ^ Array -- make a canonical projection map
-
NormalToricVariety ^** ZZ -- make the Cartesian power of a normal toric variety
-
NormalToricVariety _ Array -- make a canonical inclusion into a product
-
NormalToricVariety _ ZZ -- make an irreducible torus-invariant divisor
-
normalToricVariety(...,CoefficientRing=>...) -- make a normal toric variety
-
normalToricVariety(...,MinimalGenerators=>...) -- make a normal toric variety from a polytope
-
normalToricVariety(...,Variable=>...) -- make a normal toric variety
-
normalToricVariety(...,WeilToClass=>...) -- make a normal toric variety
-
normalToricVariety(Fan) -- make a normal toric variety from a 'Polyhedra' fan
-
normalToricVariety(List,List) -- make a normal toric variety
-
normalToricVariety(Matrix) -- make a normal toric variety from a polytope
-
normalToricVariety(Polyhedron) -- make a normal toric variety from a 'Polyhedra' polyhedron
-
normalToricVariety(Ring) -- get the associated normal toric variety
-
normalToricVariety(ToricDivisor) -- get the underlying normal toric variety
-
OO _ NormalToricVariety -- make a coherent sheaf of rings
-
OO ToricDivisor -- make the associated rank-one reflexive sheaf
-
orbits -- make a hashtable indexing the torus orbits (a.k.a. cones in the fan)
-
orbits(NormalToricVariety) -- make a hashtable indexing the torus orbits (a.k.a. cones in the fan)
-
orbits(NormalToricVariety,ZZ) -- get a list of the torus orbits (a.k.a. cones in the fan) of a given dimension
-
picardGroup -- make the Picard group
-
picardGroup(NormalToricVariety) -- make the Picard group
-
picardGroup(ToricMap) -- make the induced map between Picard groups
-
polytope(ToricDivisor) -- makes the associated 'Polyhedra' polyhedron
-
projective space -- information about various constructions of projective space
-
pullback -- make the pullback along a toric map
-
pullback(ToricMap,CoherentSheaf) -- make the pullback of a coherent sheaf under a toric map
-
pullback(ToricMap,Module) -- make the pullback of a coherent sheaf under a toric map
-
pullback(ToricMap,ToricDivisor) -- make the pullback of a Cartier divisor under a toric map
-
rays(NormalToricVariety) -- get the rays of the associated fan
-
resolving singularities -- information about find a smooth proper birational surjection
-
ring(NormalToricVariety) -- make the total coordinate ring (a.k.a. Cox ring)
-
sheaf(NormalToricVariety) -- make a coherent sheaf of rings
-
sheaf(NormalToricVariety,Module) -- make a coherent sheaf
-
sheaf(NormalToricVariety,Ring) -- make a coherent sheaf of rings
-
smallAmpleToricDivisor -- get a very ample toric divisor from the database
-
smallAmpleToricDivisor(...,CoefficientRing=>...) -- get a very ample toric divisor from the database
-
smallAmpleToricDivisor(...,Variable=>...) -- get a very ample toric divisor from the database
-
smallAmpleToricDivisor(...,WeilToClass=>...) -- get a very ample toric divisor from the database
-
smallAmpleToricDivisor(ZZ,ZZ) -- get a very ample toric divisor from the database
-
smoothFanoToricVariety -- get a smooth Fano toric variety from database
-
smoothFanoToricVariety(...,CoefficientRing=>...) -- get a smooth Fano toric variety from database
-
smoothFanoToricVariety(...,Variable=>...) -- get a smooth Fano toric variety from database
-
smoothFanoToricVariety(ZZ,ZZ) -- get a smooth Fano toric variety from database
-
source(ToricMap) -- get the source of the map
-
support(ToricDivisor) -- make the list of irreducible divisors with nonzero coefficients
-
target(ToricMap) -- get the target of the map
-
todd(CoherentSheaf) -- compute the Todd class of a coherent sheaf
-
todd(NormalToricVariety) -- compute the Todd class of a coherent sheaf
-
toricBlowup -- makes the toricBlowup of a normal toric variety along a torus orbit closure
-
toricBlowup(List,NormalToricVariety) -- makes the toricBlowup of a normal toric variety along a torus orbit closure
-
toricBlowup(List,NormalToricVariety,List) -- makes the toricBlowup of a normal toric variety along a torus orbit closure
-
ToricDivisor -- the class of all torus-invariant Weil divisors
-
toricDivisor -- make a torus-invariant Weil divisor
-
ToricDivisor + ToricDivisor -- perform arithmetic on toric divisors
-
ToricDivisor - ToricDivisor -- perform arithmetic on toric divisors
-
ToricDivisor == ToricDivisor -- equality of toric divisors
-
ToricDivisor == ZZ -- equality of toric divisors
-
toricDivisor(...,CoefficientRing=>...) -- make the toric divisor associated to a polyhedron
-
toricDivisor(...,Variable=>...) -- make the toric divisor associated to a polyhedron
-
toricDivisor(...,WeilToClass=>...) -- make the toric divisor associated to a polyhedron
-
toricDivisor(List,NormalToricVariety) -- make a torus-invariant Weil divisor
-
toricDivisor(NormalToricVariety) -- make the canonical divisor
-
toricDivisor(Polyhedron) -- make the toric divisor associated to a polyhedron
-
ToricMap -- the class of all torus-equivariant maps between normal toric varieties
-
ToricMap * ToricMap -- make the composition of two toric maps
-
ToricMap == ToricMap -- whether to toric maps are equal
-
toricProjectiveSpace -- make a projective space as a normal toric variety
-
toricProjectiveSpace(...,CoefficientRing=>...) -- make a projective space as a normal toric variety
-
toricProjectiveSpace(...,Variable=>...) -- make a projective space as a normal toric variety
-
toricProjectiveSpace(ZZ) -- make a projective space as a normal toric variety
-
variety(ToricDivisor) -- get the underlying normal toric variety
-
vector(ToricDivisor) -- make the vector of coefficients
-
vertices(ToricDivisor) -- compute the vertices of the associated polytope
-
weightedProjectiveSpace -- make a weighted projective space
-
weightedProjectiveSpace(...,CoefficientRing=>...) -- make a weighted projective space
-
weightedProjectiveSpace(...,Variable=>...) -- make a weighted projective space
-
weightedProjectiveSpace(List) -- make a weighted projective space
-
weilDivisorGroup -- make the group of torus-invariant Weil divisors
-
weilDivisorGroup(NormalToricVariety) -- make the group of torus-invariant Weil divisors
-
weilDivisorGroup(ToricMap) -- make the induced map between groups of Weil divisors
-
WeilToClass -- make a normal toric variety
-
working with divisors -- information about toric divisors and their related groups
-
working with sheaves -- information about coherent sheaves and total coordinate rings (a.k.a. Cox rings)
-
working with toric maps -- information about toric maps and the induced operations
-
ZZ * ToricDivisor -- perform arithmetic on toric divisors
-
ZZ == ToricDivisor -- equality of toric divisors