i1 : setNmzOption("allf",true); |
i2 : eq=matrix {{1, 1, 1, -1, -1, -1, 0, 0, 0}, {1, 1, 1, 0, 0, 0, -1, -1, -1}, {0, 1, 1, -1, 0, 0, -1, 0, 0}, {1, 0, 1, 0, -1, 0, 0, -1, 0}, {1, 1, 0, 0, 0, -1, 0, 0, -1}, {0, 1, 1, 0, -1, 0, 0, 0, -1}, {1, 1, 0, 0, -1, 0, -1, 0, 0}}; 7 9 o2 : Matrix ZZ <--- ZZ |
i3 : rc=normaliz(eq,"equations") o3 = RationalCone{gen => | 0 2 1 2 1 0 1 0 2 | } | 1 0 2 2 1 0 0 2 1 | | 1 1 1 1 1 1 1 1 1 | | 1 2 0 0 1 2 2 0 1 | | 2 0 1 0 1 2 1 2 0 | inv => HashTable{ => (1, 1, 1) } class group => (1, 2, 2) degree 1 elements => 5 dim max subspace => 0 embedding dim => 9 external index => 1 graded => true grading denom => 1 grading => (0, 0, 0, 0, 1, 0, 0, 0, 0) hilbert basis elements => 5 hilbert quasipolynomial denom => 1 hilbert series denom => (1, 1, 1) hilbert series num => (1, 2, 1) inhomogeneous => false multiplicity denom => 1 multiplicity => 4 number extreme rays => 4 number support hyperplanes => 4 rank => 3 size triangulation => 2 sum dets => 4 o3 : RationalCone |
i4 : arc=normaliz(allComputations=>true,eq,"equations"); |
i5 : arc#"gen" o5 = | 0 2 1 2 1 0 1 0 2 | | 1 0 2 2 1 0 0 2 1 | | 1 1 1 1 1 1 1 1 1 | | 1 2 0 0 1 2 2 0 1 | | 2 0 1 0 1 2 1 2 0 | 5 9 o5 : Matrix ZZ <--- ZZ |
i6 : arc#"ext" o6 = | 0 2 1 2 1 0 1 0 2 | | 1 0 2 2 1 0 0 2 1 | | 1 2 0 0 1 2 2 0 1 | | 2 0 1 0 1 2 1 2 0 | 4 9 o6 : Matrix ZZ <--- ZZ |
i7 : arc#"inv" o7 = HashTable{ => (1, 1, 1) } class group => (1, 2, 2) degree 1 elements => 5 dim max subspace => 0 embedding dim => 9 external index => 1 graded => true grading denom => 1 grading => (0, 0, 0, 0, 1, 0, 0, 0, 0) hilbert basis elements => 5 hilbert quasipolynomial denom => 1 hilbert series denom => (1, 1, 1) hilbert series num => (1, 2, 1) inhomogeneous => false multiplicity denom => 1 multiplicity => 4 number extreme rays => 4 number support hyperplanes => 4 rank => 3 size triangulation => 2 sum dets => 4 o7 : HashTable |
The object normaliz is a method function with options.