Given a list of generators of an ideal I, this function returns a NumericalVariety with a WitnessSet for each irreducible component of V(I).
i1 : R=CC[x11,x22,x21,x12,x23,x13,x14,x24]; |
i2 : system={x11*x22-x21*x12,x12*x23-x22*x13,x13*x24-x23*x14}; |
i3 : V=numericalIrreducibleDecomposition(system) found 6 irreducible factors o3 = V o3 : NumericalVariety |
i4 : WitSets=V#5; --witness sets are accessed by dimension |
i5 : w=first WitSets; |
i6 : w.cache.IsIrreducible o6 = true |
In the above example we found three components of dimension five, we can check the solution using symbolic methods.
i7 : R=QQ[x11,x22,x21,x12,x23,x13,x14,x24]; |
i8 : system={x11*x22-x21*x12,x12*x23-x22*x13,x13*x24-x23*x14}; |
i9 : PD=primaryDecomposition(ideal(system)) o9 = {ideal (x13, x23, x11*x22 - x21*x12), ideal (x12, x22, x23*x14 - ------------------------------------------------------------------------ x13*x24), ideal (x23*x14 - x13*x24, x21*x14 - x11*x24, x22*x14 - ------------------------------------------------------------------------ x12*x24, x12*x23 - x22*x13, x11*x23 - x21*x13, x11*x22 - x21*x12)} o9 : List |
i10 : for i from 0 to 2 do print ("dim =" | dim PD_i | " " | "degree=" | degree PD_i) dim =5 degree=2 dim =5 degree=2 dim =5 degree=4 |
The object numericalIrreducibleDecomposition is a method function with options.