This function outputs a list of all consistent colorings of the leaves of tree T. That is all sequences $(g_1,\ldots,g_n)$ such that $g_1+\cdots +g_n = 0$ where each $g_i$ is an element of the group associated to the model M, and n is the number of leaves of the tree.
These correspond the set of subscripts of the variables in the ring output by qRing, and appear in the same order.
i1 : leafColorings(4,CFNmodel) o1 = {(0, 0, 0, 0), (0, 0, 1, 1), (0, 1, 0, 1), (0, 1, 1, 0), (1, 0, 0, 1), ------------------------------------------------------------------------ (1, 0, 1, 0), (1, 1, 0, 0), (1, 1, 1, 1)} o1 : List |
i2 : leafColorings(3,JCmodel) o2 = {({0, 0}, {0, 0}, {0, 0}), ({0, 0}, {0, 1}, {0, 1}), ({0, 0}, {1, 0}, ------------------------------------------------------------------------ {1, 0}), ({0, 0}, {1, 1}, {1, 1}), ({0, 1}, {0, 0}, {0, 1}), ({0, 1}, ------------------------------------------------------------------------ {0, 1}, {0, 0}), ({0, 1}, {1, 0}, {1, 1}), ({0, 1}, {1, 1}, {1, 0}), ------------------------------------------------------------------------ ({1, 0}, {0, 0}, {1, 0}), ({1, 0}, {0, 1}, {1, 1}), ({1, 0}, {1, 0}, {0, ------------------------------------------------------------------------ 0}), ({1, 0}, {1, 1}, {0, 1}), ({1, 1}, {0, 0}, {1, 1}), ({1, 1}, {0, ------------------------------------------------------------------------ 1}, {1, 0}), ({1, 1}, {1, 0}, {0, 1}), ({1, 1}, {1, 1}, {0, 0})} o2 : List |
The object leafColorings is a method function.