i1 : P = convexHull matrix{{1,0,0,0},{0,1,0,0},{0,0,1,0}} o1 = P o1 : Polyhedron |
i2 : F = normalFan P o2 = F o2 : Fan |
i3 : F1 = skeleton(2,F) o3 = F1 o3 : Fan |
i4 : raysF = rays F o4 = | 1 0 -1 0 | | 0 1 -1 0 | | 0 0 -1 1 | 3 4 o4 : Matrix ZZ <--- ZZ |
i5 : apply(maxCones F1, mc -> raysF_mc) o5 = {| 1 0 |, | 1 -1 |, | 1 0 |, | 0 -1 |, | 0 0 |, | -1 0 |} | 0 1 | | 0 -1 | | 0 0 | | 1 -1 | | 1 0 | | -1 0 | | 0 0 | | 0 -1 | | 0 1 | | 0 -1 | | 0 1 | | -1 1 | o5 : List |
i6 : PC = polyhedralComplex hypercube 3 o6 = PC o6 : PolyhedralComplex |
i7 : PC1 = skeleton(2,PC) o7 = PC1 o7 : PolyhedralComplex |
i8 : vertPC1 = vertices PC1 o8 = | -1 1 -1 1 -1 1 -1 1 | | -1 -1 1 1 -1 -1 1 1 | | -1 -1 -1 -1 1 1 1 1 | 3 8 o8 : Matrix QQ <--- QQ |
i9 : apply(maxPolyhedra PC1, mp -> vertPC1_(mp#0)) o9 = {| -1 1 |, | -1 -1 |, | -1 -1 |, | 1 1 |, | 1 1 |, | -1 1 |, | -1 | -1 -1 | | -1 1 | | -1 -1 | | -1 1 | | -1 -1 | | 1 1 | | 1 | -1 -1 | | -1 -1 | | -1 1 | | -1 -1 | | -1 1 | | -1 -1 | | -1 ------------------------------------------------------------------------ -1 |, | 1 1 |, | -1 1 |, | -1 -1 |, | 1 1 |, | -1 1 |} 1 | | 1 1 | | -1 -1 | | -1 1 | | -1 1 | | 1 1 | 1 | | -1 1 | | 1 1 | | 1 1 | | 1 1 | | 1 1 | o9 : List |
The object skeleton is a method function.