This method computes the induced subposet $Q$ of $P$ with the elements of $L$ removed from the poset.
i1 : P = chain 5; |
i2 : dropElements(P, {3}) o2 = Relation Matrix: | 1 1 1 1 | | 0 1 1 1 | | 0 0 1 1 | | 0 0 0 1 | o2 : Poset |
i3 : P - {4, 5} o3 = Relation Matrix: | 1 1 1 | | 0 1 1 | | 0 0 1 | o3 : Poset |
Alternatively, this method computes the induced subposet $Q$ of $P$ with the elements removed which return true when $f$ is applied.
i4 : P = divisorPoset (2*3*5*7); |
i5 : Q = dropElements(P, e -> e % 3 == 0) o5 = Q o5 : Poset |
i6 : Q == divisorPoset(2*5*7) o6 = true |
The object dropElements is a method function.