Posets : Table of Contents
-
Posets -- a package for working with partially ordered sets
-
adjoinMax -- computes the poset with a new maximum element
-
adjoinMin -- computes the poset with a new minimum element
-
-
-
-
atoms -- computes the list of elements covering the minimal elements of a poset
-
augmentPoset -- computes the poset with an adjoined minimum and maximum
-
-
boundedRegions -- computes the number of bounded regions a hyperplane arrangement divides the space into
-
chain -- generates the chain poset on $n$ elements
-
chains -- computes all chains of a poset
-
-
-
-
compare -- compares two elements in a poset
-
-
-
-
-
-
-
displayPoset -- generates a PDF representation of a poset and attempts to display it
-
-
-
-
-
-
-
dropElements -- computes the induced subposet of a poset given a list of elements to remove
-
dual(Poset) -- produces the derived poset with relations reversed
-
-
-
-
-
facePoset -- generates the face poset of a simplicial complex
-
filter -- computes the elements above given elements in a poset
-
-
flagChains -- computes the maximal chains in a list of flags of a ranked poset
-
-
-
flagPoset -- computes the subposet of specified ranks of a ranked poset
-
-
-
-
-
-
hibiIdeal -- produces the Hibi ideal of a poset
-
hibiRing -- produces the Hibi ring of a poset
-
-
-
indexLabeling -- relabels a poset with the labeling based on the indices of the vertices
-
-
isAntichain -- determines if a given list of vertices is an antichain of a poset
-
isAtomic -- determines if a lattice is atomic
-
isBounded -- determines if a poset is bounded
-
-
-
-
-
-
isGraded -- determines if a poset is graded
-
isLattice -- determines if a poset is a lattice
-
-
-
isModular -- determines if a lattice is modular
-
isomorphism -- computes an isomorphism between isomorphic posets
-
isRanked -- determines if a poset is ranked
-
isSperner -- determines if a ranked poset has the Sperner property
-
isStrictSperner -- determines if a ranked poset has the strict Sperner property
-
-
-
joinExists -- determines if the join exists for two elements of a poset
-
-
labelPoset -- relabels a poset with the specified labeling
-
lcmLattice -- generates the lattice of lcms in an ideal
-
-
-
-
-
meetExists -- determines if the meet exists for two elements of a poset
-
-
-
moebiusFunction -- computes the Moebius function at every pair of elements of a poset
-
-
ncPartitions -- generates the non-crossing partitions of size $n$
-
ncpLattice -- computes the non-crossing partition lattice of set-partitions of size $n$
-
openInterval -- computes the subposet contained strictly between two points
-
-
orderIdeal -- computes the elements below given elements in a poset
-
outputTexPoset -- writes a LaTeX file with a TikZ-representation of a poset
-
-
plueckerPoset -- computes a poset associated to the Plücker relations
-
poincarePolynomial -- computes the Poincare polynomial of a ranked poset with a unique minimal element
-
Poset -- a class for partially ordered sets (posets)
-
poset -- creates a new Poset object
-
-
Poset _ ZZ -- returns an element of the ground set
-
Poset _* -- returns the ground set of a poset
-
posetJoin -- determines the join for two elements of a poset
-
posetMeet -- determines the meet for two elements of a poset
-
-
Precompute -- a package-wide configuration that toggles precomputation
-
-
-
-
-
randomPoset -- generates a random poset with a given relation probability
-
rankFunction -- computes the rank function of a ranked poset
-
-
rankPoset -- generates a list of lists representing the ranks of a ranked poset
-
realRegions -- computes the number of regions a hyperplane arrangement divides the space into
-
-
-
setPartition -- computes the list of set-partitions of size $n$
-
-
-
-
subposet -- computes the induced subposet of a poset given a list of elements
-
texPoset -- generates a string containing a TikZ-figure of a poset
-
-
-
-
union -- computes the union of two posets
-
-