Checks to see if a given submodule Q of a module M is primary, i.e. whether or not M/Q has exactly one associated prime (which is equivalent for finitely generated modules over Noetherian rings). If the input is a single ideal, then the ambient module is taken to be the ring (i.e. the free module of rank 1), and does not need to be specified.
i1 : Q = ZZ/101[x,y,z] o1 = Q o1 : PolynomialRing |
i2 : isPrimary ideal(y^6) o2 = true |
i3 : isPrimary(ideal(y^6), ideal(y)) o3 = true |
i4 : isPrimary ideal(x^4, y^7) o4 = true |
i5 : isPrimary ideal(x*y, y^2) o5 = false |
The object isPrimary is a method function with options.