Given a (not necessarily finite) ring map $f : A \to B$, the $B$-module $M$ can be considered as a module over $A$. If $M$ is finite, this method returns the corresponding $A$-module.
i1 : kk = QQ; |
i2 : A = kk[t]; |
i3 : B = kk[x,y]/(x*y); |
i4 : use B; |
i5 : i = ideal(x) o5 = ideal x o5 : Ideal of B |
i6 : f = map(B,A,{x}) o6 = map (B, A, {x}) o6 : RingMap B <--- A |
i7 : pushFwd(f,module i) 1 o7 = A o7 : A-module, free, degrees {1} |