i1 : wtR = matrix{{12,5}}; 1 2 o1 : Matrix ZZ <--- ZZ |
i2 : Rq = ZZ/2[y,x,Weights=> entries weightGrevlex(wtR)]; |
i3 : Iq = {y^5+y^2*(x^4+x)+y*x^2+x^12}; |
i4 : I = ideal(Iq); o4 : Ideal of Rq |
i5 : depno = (numColumns wtR) -(numRows wtR); |
i6 : delta = qthConductor(I,depno) 2 o6 = x o6 : Rq |
This gives a canonical conductor element { t delta} living in the given Noether normalization, P, the subring of the last numRows(wtR) (free) variables.
The object qthConductor is a method function.