Given a list of sets of monomials, the function converts each set into a monomial ideal.
i1 : n=4; D=2; p=1.0; N=3; |
i5 : B=randomMonomialSets(n,D,p,N); B/print 2 2 2 2 {x , x , x , x , x , x x , x x , x x , x , x x , x x , x , x x , x } 1 2 3 4 1 1 2 1 3 1 4 2 2 3 2 4 3 3 4 4 2 2 2 2 {x , x , x , x , x , x x , x x , x x , x , x x , x x , x , x x , x } 1 2 3 4 1 1 2 1 3 1 4 2 2 3 2 4 3 3 4 4 2 2 2 2 {x , x , x , x , x , x x , x x , x x , x , x x , x x , x , x x , x } 1 2 3 4 1 1 2 1 3 1 4 2 2 3 2 4 3 3 4 4 o6 = {, , } o6 : List |
i7 : idealsFromGeneratingSets(B) o7 = {monomialIdeal (x , x , x , x ), monomialIdeal (x , x , x , x ), 1 2 3 4 1 2 3 4 ------------------------------------------------------------------------ monomialIdeal (x , x , x , x )} 1 2 3 4 o7 : List |
In case the option IncludeZeroIdeals is set to false, the function also counts how many sets are converted to the zero ideal.
The object idealsFromGeneratingSets is a method function with options.