For an ideal $I$, a subideal $J$ of $I$ is said to be a reduction of $I$ if there exists a nonnegative integer n such that $JI^{n}=I^{n+1}$.
This function returns true if $J$ is a reduction of $I$ and returns false if $J$ is not a subideal of $I$ or $J$ is a subideal but not a reduction of $I$.
i1 : S = ZZ/5[x,y] o1 = S o1 : PolynomialRing |
i2 : I = ideal(x^3,x*y,y^4) 3 4 o2 = ideal (x , x*y, y ) o2 : Ideal of S |
i3 : J = ideal(x*y, x^3+y^4) 4 3 o3 = ideal (x*y, y + x ) o3 : Ideal of S |
i4 : isReduction(I,J) o4 = true |
i5 : isReduction(J,I) o5 = false |
i6 : isReduction(I,I) o6 = true |
i7 : g = I_0 3 o7 = x o7 : S |
i8 : isReduction(I,J,g) o8 = true |
i9 : isReduction(J,I,g) o9 = false |
i10 : isReduction(I,I,g) o10 = true |
The object isReduction is a method function with options.