This package is based on two articles by Bermejo and Gimenez: Saturation and Castelnuovo-mumford Regularity, Journal of Algebra 303/2006 and Computing the Castelnuovo-Mumford Regularity of some subschemes of P^n using quotients of monomial ideals, Journal of Pure and Applied Algebra 164/2001.
computing the regularity of the defining ideal of the second Veronesean of P3
i1 : R=QQ[a,b,c,d,x_0..x_9,MonomialOrder => Eliminate 4] o1 = R o1 : PolynomialRing |
i2 : i=ideal( x_0-a*b,x_1-a*c,x_2-a*d,x_3-b*c,x_4-b*d,x_5-c*d,x_6-a^2,x_7-b^2,x_8-c^2,x_9-d^2) o2 = ideal (- a*b + x , - a*c + x , - a*d + x , - b*c + x , - b*d + x , - c*d 0 1 2 3 4 ------------------------------------------------------------------------ 2 2 2 2 + x , - a + x , - b + x , - c + x , - d + x ) 5 6 7 8 9 o2 : Ideal of R |
i3 : j=selectInSubring(1, gens gb i) o3 = | x_5^2-x_8x_9 x_4x_5-x_3x_9 x_3x_5-x_4x_8 x_2x_5-x_1x_9 x_1x_5-x_2x_8 ------------------------------------------------------------------------ x_4^2-x_7x_9 x_3x_4-x_5x_7 x_2x_4-x_0x_9 x_1x_4-x_0x_5 x_0x_4-x_2x_7 ------------------------------------------------------------------------ x_3^2-x_7x_8 x_2x_3-x_0x_5 x_1x_3-x_0x_8 x_0x_3-x_1x_7 x_2^2-x_6x_9 ------------------------------------------------------------------------ x_1x_2-x_5x_6 x_0x_2-x_4x_6 x_1^2-x_6x_8 x_0x_1-x_3x_6 x_0^2-x_6x_7 | 1 20 o3 : Matrix R <--- R |
i4 : I=ideal flatten entries j -- this is the ideal of the Veronesean, 2 2 o4 = ideal (x - x x , x x - x x , x x - x x , x x - x x , x x - x x , x 5 8 9 4 5 3 9 3 5 4 8 2 5 1 9 1 5 2 8 4 ------------------------------------------------------------------------ 2 - x x , x x - x x , x x - x x , x x - x x , x x - x x , x - x x , 7 9 3 4 5 7 2 4 0 9 1 4 0 5 0 4 2 7 3 7 8 ------------------------------------------------------------------------ 2 x x - x x , x x - x x , x x - x x , x - x x , x x - x x , x x - 2 3 0 5 1 3 0 8 0 3 1 7 2 6 9 1 2 5 6 0 2 ------------------------------------------------------------------------ 2 2 x x , x - x x , x x - x x , x - x x ) 4 6 1 6 8 0 1 3 6 0 6 7 o4 : Ideal of R |
i5 : mRegularity I o5 = 3 |
This is an example where mRegularity is faster than regularity. Regularity takes approximately 190 seconds.
i6 : R = QQ[x_0..x_5] o6 = R o6 : PolynomialRing |
i7 : I1 = ideal (x_0^2*x_1+x_0*x_1*x_2-x_0*x_4^2,-x_0*x_2^2+x_0^2*x_5,x_0^2*x_2-x_0*x_1*x_4,x_0^3-x_2^3+x_0*x_1*x_3,x_0^3+x_0^2*x_1-x_1*x_2^2-x_0*x_2*x_5,x_0^3+x_2^3-x_0*x_5^2) 2 2 2 2 2 3 3 o7 = ideal (x x + x x x - x x , - x x + x x , x x - x x x , x - x + 0 1 0 1 2 0 4 0 2 0 5 0 2 0 1 4 0 2 ------------------------------------------------------------------------ 3 2 2 3 3 2 x x x , x + x x - x x - x x x , x + x - x x ) 0 1 3 0 0 1 1 2 0 2 5 0 2 0 5 o7 : Ideal of R |
i8 : benchmark "mRegularity I1" o8 = .433688256 o8 : RR (of precision 53) |
This is an example where regularity is faster than mRegularity.
i9 : R = QQ[x_0..x_5] o9 = R o9 : PolynomialRing |
i10 : I2 = ideal ( x_0^2+x_5^2, x_0^2+x_0*x_3+x_4^2, x_0^2+x_0*x_5+x_2*x_5, x_0^2-x_0*x_3-x_3*x_5, x_0^2-x_3*x_4, x_0*x_3); o10 : Ideal of R |
i11 : benchmark " mRegularity I2" o11 = .0540768606976744 o11 : RR (of precision 53) |
i12 : time regularity I2 -- used 0.00581787 seconds o12 = 4 |
This symbol is provided by the package Regularity.
The object mRegularity is a method function with options.