Because I is monomial, we can check the number of generators of I localized at a prime P over only monomial primes P.
i1 : R = QQ[x_0..x_4]; |
i2 : I = monomialIdeal{x_0^2,x_1*x_2,x_3*x_4^2} 2 2 o2 = monomialIdeal (x , x x , x x ) 0 1 2 3 4 o2 : MonomialIdeal of R |
i3 : numgensByCodim(I,2) o3 = 1 |
i4 : numgensByCodim I o4 = {1, 1, 3, 3, 3} o4 : List |
The object numgensByCodim is a method function.