Converts the exponent vector v into a Laurent monomial in the variables of R. The result lies in frac R. The number of variables of R has to match the length of v.
If given a FirstOrderDeformation it returns the corresponding laurent monomial.
i1 : R=QQ[x_0..x_4] o1 = R o1 : PolynomialRing |
i2 : m=vector {1,-2,1,0,0} o2 = | 1 | | -2 | | 1 | | 0 | | 0 | 5 o2 : ZZ |
i3 : laurent(m,R) x x 0 2 o3 = ---- 2 x 1 o3 : frac R |
i4 : R=QQ[x_0..x_4] o4 = R o4 : PolynomialRing |
i5 : addCokerGrading(R); 5 4 o5 : Matrix ZZ <--- ZZ |
i6 : I=ideal(x_0*x_1,x_1*x_2,x_2*x_3,x_3*x_4,x_4*x_0) o6 = ideal (x x , x x , x x , x x , x x ) 0 1 1 2 2 3 3 4 0 4 o6 : Ideal of R |
i7 : mg=mingens I; 1 5 o7 : Matrix R <--- R |
i8 : f=firstOrderDeformation(mg, vector {-1,-1,0,2,0}) 2 x 3 o8 = ---- x x 0 1 o8 : first order deformation space of dimension 1 |
i9 : laurent f 2 x 3 o9 = ---- x x 0 1 o9 : frac R |
The object laurent is a method function.