Computes a list L of possible denominators of Laurent monomials representing FirstOrderDeformations of I. The list L is stratified into lists with ascending degree of the denominators. Each denominator is represented as a list of variables.
If the second argument v is given, one obtains only denominators contained (as a list) in v.
i1 : R=QQ[x_0..x_4]; |
i2 : I=ideal(x_0*x_1,x_1*x_2,x_2*x_3,x_3*x_4,x_4*x_0); o2 : Ideal of R |
i3 : possibleDenominators(I) o3 = {{{x }, {x }, {x }, {x }, {x }}, {{x , x }, {x , x }, {x , x }, {x , 0 1 2 3 4 0 1 1 2 2 3 0 ------------------------------------------------------------------------ x }, {x , x }}} 4 3 4 o3 : List |
i4 : possibleDenominators(I,{x_0,x_1,x_2}); |
The object possibleDenominators is a method function.