Computes the co-complex of tropical faces of the deformation polytope.
This is work in progress.
i1 : R=QQ[x_0..x_3] o1 = R o1 : PolynomialRing |
i2 : I=ideal(x_0*x_1,x_2*x_3) o2 = ideal (x x , x x ) 0 1 2 3 o2 : Ideal of R |
i3 : C=idealToComplex I o3 = 1: x x x x x x x x 0 2 1 2 0 3 1 3 o3 : complex of dim 1 embedded in dim 3 (printing facets) equidimensional, simplicial, F-vector {1, 4, 4, 0, 0}, Euler = -1 |
i4 : PT1C=PT1 C o4 = 3: y y y y y y y y 0 1 2 3 4 5 6 7 o4 : complex of dim 3 embedded in dim 3 (printing facets) equidimensional, non-simplicial, F-vector {1, 8, 14, 8, 1}, Euler = 0 |
i5 : tropDefC=tropDef(C,PT1C) o5 = 1: y y y y y y y y 0 3 6 7 2 5 1 4 o5 : co-complex of dim 1 embedded in dim 3 (printing facets) equidimensional, non-simplicial, F-vector {0, 0, 4, 4, 1}, Euler = -1 |
i6 : tropDefC.grading o6 = | -1 0 0 | | 1 0 0 | | -1 2 0 | | 0 -1 -1 | | 2 -1 -1 | | 0 1 -1 | | 0 -1 1 | | -1 0 2 | 8 3 o6 : Matrix ZZ <--- ZZ |
The implementation of testing whether a face is tropical so far uses a trick to emulate higher order. For complicated (non-complete intersections and non-Pfaffians) examples this may lead to an incorrect result. Use with care. This will be fixed at some point.
If using OldPolyhedra to compute convex hulls and its faces instead of ConvexInterface you are limited to rather simple examples.
The object tropDef is a method function.