Applies the Schur functor associated to lambda to the map f between free modules. The modules source F and target F are Schur modules containing certain data in cache (see schurModule).
i1 : R=QQ[x_1,x_2,x_3] o1 = R o1 : PolynomialRing |
i2 : F=map(R^1,R^3,vars R) o2 = | x_1 x_2 x_3 | 1 3 o2 : Matrix R <--- R |
i3 : L=schur({2},F) -- 2nd veronese embedding o3 = | x_1^2 x_1x_2 x_1x_3 x_2^2 x_2x_3 x_3^2 | 1 6 o3 : Matrix R <--- R |
i4 : F=matrix{{1_QQ,2,4},{3,9,27},{4,16,64}} o4 = | 1 2 4 | | 3 9 27 | | 4 16 64 | 3 3 o4 : Matrix QQ <--- QQ |
i5 : schur({1,1},F) o5 = | 3 15 18 | | 8 48 64 | | 12 84 144 | 3 3 o5 : Matrix QQ <--- QQ |
i6 : minors(2,F) o6 = ideal (3, 8, 12, 15, 48, 84, 18, 64, 144) o6 : Ideal of QQ |
i7 : schur({1,1,1},F) == det F o7 = true |
The partition lambda should be a valid nonempty partition.
The object schur is a method function.