For subschemes X,Y of \PP^{n_1}x...x\PP^{n_m} this command computes the dimension X part of the Segre class s(X,Y) of X in Y as a class in the Chow ring of \PP^{n_1}x...x\PP^{n_m}. This is faster than computing the entire Segre class.
i1 : R = makeProductRing({2,2}) o1 = R o1 : PolynomialRing |
i2 : x = gens(R) o2 = {a, b, c, d, e, f} o2 : List |
i3 : Y = ideal(random({2,2},R)); o3 : Ideal of R |
i4 : X = Y+ideal(x_0*x_3+x_1*x_4); o4 : Ideal of R |
i5 : A = makeChowRing(R) o5 = A o5 : QuotientRing |
i6 : time s = segreDimX(X,Y,A) -- used 0.24438 seconds 2 2 o6 = 2H + 4H H + 2H 1 1 2 2 o6 : A |
i7 : time segre(X,Y,A) -- used 0.168976 seconds 2 2 2 2 2 2 o7 = 12H H - 6H H - 6H H + 2H + 4H H + 2H 1 2 1 2 1 2 1 1 2 2 o7 : A |
The object segreDimX is a method function with options.