Returns the module in the \{i,j\} \ position in the spectral sequence page. (Using cohomological or upper indexing conventions.) The relationship $E^{-i,-j} = E_{i,j}$ holds.
i1 : A = QQ[x,y] o1 = A o1 : PolynomialRing |
i2 : C = koszul vars A; |
i3 : K = filteredComplex C; |
i4 : E = spectralSequence K o4 = E o4 : SpectralSequence |
i5 : E_0 +-----------------+-----------------------+------+ | | | 1 | o5 = |image | 1 0 0 0 ||image {1} | 1 0 0 0 0 ||A | | | {1} | 0 1 0 0 0 || | |{0, 0} | |{2, 0}| | |{1, 0} | | +-----------------+-----------------------+------+ o5 : SpectralSequencePage |
i6 : E_0 ^{-1,0} o6 = image {1} | 1 0 0 0 0 | {1} | 0 1 0 0 0 | 2 o6 : A-module, submodule of A |
i7 : E^0 _{1,0} o7 = image {1} | 1 0 0 0 0 | {1} | 0 1 0 0 0 | 2 o7 : A-module, submodule of A |