We can make a filtered complex from a list of chain complex maps as follows. We first need to load the relevant packages.
i1 : needsPackage "SpectralSequences" o1 = SpectralSequences o1 : Package |
We then make a chain complex.
i2 : R = QQ[x,y,z,w] o2 = R o2 : PolynomialRing |
i3 : d2 = matrix(R,{{1},{0}}) o3 = | 1 | | 0 | 2 1 o3 : Matrix R <--- R |
i4 : d1 = matrix(R,{{0,1}}) o4 = | 0 1 | 1 2 o4 : Matrix R <--- R |
i5 : C = chainComplex({d1,d2}) 1 2 1 o5 = R <-- R <-- R 0 1 2 o5 : ChainComplex |
We now make the modules of the another chain complex which we will label D.
i6 : D_2 = image matrix(R,{{1}}) o6 = image | 1 | 1 o6 : R-module, submodule of R |
i7 : D_1 = image matrix(R,{{1,0},{0,0}}) o7 = image | 1 0 | | 0 0 | 2 o7 : R-module, submodule of R |
i8 : D_0 = image matrix(R,{{1}}) o8 = image | 1 | 1 o8 : R-module, submodule of R |
i9 : D = chainComplex({inducedMap(D_0,D_1,C.dd_1),inducedMap(D_1,D_2,C.dd_2)}) o9 = image | 1 | <-- image | 1 0 | <-- image | 1 | | 0 0 | 0 2 1 o9 : ChainComplex |
Now make a chain complex map.
i10 : d = chainComplexMap(C,D,apply(spots C, i-> inducedMap(C_i,D_i,id_C _i))) 1 o10 = 0 : R <--------- image | 1 | : 0 | 1 | 2 1 : R <----------- image | 1 0 | : 1 | 1 0 | | 0 0 | | 0 0 | 1 2 : R <--------- image | 1 | : 2 | 1 | o10 : ChainComplexMap |
i11 : isChainComplexMap d o11 = true |
i12 : d == chainComplexMap(C,D,{inducedMap(C_0,D_0,id_(C_0)),inducedMap(C_1,D_1,id_(C_1)),inducedMap(C_2,D_2,id_(C_2))}) o12 = true |
We now make the modules of another chain complex which we will label E.
i13 : E_2 = image matrix(R,{{0}}) o13 = image 0 1 o13 : R-module, submodule of R |
i14 : E_1 = image matrix(R,{{1,0},{0,0}}) o14 = image | 1 0 | | 0 0 | 2 o14 : R-module, submodule of R |
i15 : E_0 = image matrix(R,{{1}}) o15 = image | 1 | 1 o15 : R-module, submodule of R |
i16 : E = chainComplex({inducedMap(E_0,E_1,C.dd_1),inducedMap(E_1,E_2,C.dd_2)}) o16 = image | 1 | <-- image | 1 0 | <-- image 0 | 0 0 | 0 2 1 o16 : ChainComplex |
Now make a chain complex map.
i17 : e = chainComplexMap(C,E,apply(spots C, i->inducedMap(C_i,D_i, id_C _i))) 1 o17 = 0 : R <--------- image | 1 | : 0 | 1 | 2 1 : R <----------- image | 1 0 | : 1 | 1 0 | | 0 0 | | 0 0 | 1 2 : R <--------- image | 1 | : 2 | 1 | o17 : ChainComplexMap |
Now make a filtered complex from a list of chain complex maps.
i18 : K = filteredComplex({d,e}) o18 = -1 : image 0 <-- image 0 <-- image 0 0 1 2 0 : image | 1 | <-- image | 1 0 | <-- image | 1 | | 0 0 | 0 2 1 1 : image | 1 | <-- image | 1 0 | <-- image | 1 | | 0 0 | 0 2 1 1 2 1 2 : R <-- R <-- R 0 1 2 o18 : FilteredComplex |
We can make a filtered complex, with a specified minimum filtration degree from a list of ChainComplexMaps by using the Shift option.
i19 : L = filteredComplex({d,e},Shift => 1) o19 = -2 : image 0 <-- image 0 <-- image 0 0 1 2 -1 : image | 1 | <-- image | 1 0 | <-- image | 1 | | 0 0 | 0 2 1 0 : image | 1 | <-- image | 1 0 | <-- image | 1 | | 0 0 | 0 2 1 1 2 1 1 : R <-- R <-- R 0 1 2 o19 : FilteredComplex |
i20 : M = filteredComplex({d,e},Shift => -1) o20 = 0 : image 0 <-- image 0 <-- image 0 0 1 2 1 : image | 1 | <-- image | 1 0 | <-- image | 1 | | 0 0 | 0 2 1 2 : image | 1 | <-- image | 1 0 | <-- image | 1 | | 0 0 | 0 2 1 1 2 1 3 : R <-- R <-- R 0 1 2 o20 : FilteredComplex |
We can make a filtered complex from a nested list of simplicial complexes as follows
i21 : D = simplicialComplex {x*y*z, x*y, y*z, w*z} o21 = | zw xyz | o21 : SimplicialComplex |
i22 : E = simplicialComplex {x*y, w} o22 = | w xy | o22 : SimplicialComplex |
i23 : F = simplicialComplex {x,w} o23 = | w x | o23 : SimplicialComplex |
i24 : K = filteredComplex{D,E,F} o24 = -1 : image 0 <-- image 0 <-- image 0 <-- image 0 -1 0 1 2 0 : image | 1 | <-- image | 1 0 | <-- image 0 <-- image 0 | 0 0 | -1 | 0 0 | 1 2 | 0 1 | 0 1 : image | 1 | <-- image | 1 0 0 | <-- image | 1 | <-- image 0 | 0 1 0 | | 0 | -1 | 0 0 0 | | 0 | 2 | 0 0 1 | | 0 | 0 1 1 4 4 1 2 : QQ <-- QQ <-- QQ <-- QQ -1 0 1 2 o24 : FilteredComplex |
If we want the resulting complexes to correspond to the non-reduced homology of the simpicial complexes we can do the following.
i25 : filteredComplex({D,E,F}, ReducedHomology => false) o25 = -1 : image 0 <-- image 0 <-- image 0 <-- image 0 -1 0 1 2 0 : image 0 <-- image | 1 0 | <-- image 0 <-- image 0 | 0 0 | -1 | 0 0 | 1 2 | 0 1 | 0 1 : image 0 <-- image | 1 0 0 | <-- image | 1 | <-- image 0 | 0 1 0 | | 0 | -1 | 0 0 0 | | 0 | 2 | 0 0 1 | | 0 | 0 1 4 4 1 2 : image 0 <-- QQ <-- QQ <-- QQ -1 0 1 2 o25 : FilteredComplex |