Given a ring map R -> S and a chain complex over R, returns the tensor product of the given chain complex.
i1 : R = QQ[x]; |
i2 : M = R^1/(x^2); |
i3 : S = R/(x^4); |
i4 : C = res M 1 1 o4 = R <-- R <-- 0 0 1 2 o4 : ChainComplex |
i5 : f = map(S,R,{1}); o5 : RingMap S <--- R |
i6 : tensor(f,C) 1 1 o6 = S <-- S <-- 0 0 1 2 o6 : ChainComplex |