Let G=mixedGraph(U,D,B) and denote the vertices of U by V1, the vertices of D by V2 and the vertices of B by V3. Then the method collateVertices(G) outputs a mixedGraph with same edges as before but with V1 \cup V2 \cup V3 as the vertices of U,D and B.
i1 : U = graph{{1,2},{2,3},{3,4},{1,4},{1,5}} o1 = Graph{1 => {2, 4, 5}} 2 => {1, 3} 3 => {2, 4} 4 => {1, 3} 5 => {1} o1 : Graph |
i2 : D = digraph{{2,1},{3,1},{7,8}} o2 = Digraph{1 => {} } 2 => {1} 3 => {1} 7 => {8} 8 => {} o2 : Digraph |
i3 : B = bigraph{{1,5}} o3 = Bigraph{1 => {5}} 5 => {1} o3 : Bigraph |
i4 : G = mixedGraph(U,D,B) o4 = MixedGraph{Bigraph => Bigraph{1 => {5}} } 5 => {1} Digraph => Digraph{1 => {} } 2 => {1} 3 => {1} 7 => {8} 8 => {} Graph => Graph{1 => {2, 4, 5}} 2 => {1, 3} 3 => {2, 4} 4 => {1, 3} 5 => {1} o4 : MixedGraph |
i5 : collateVertices G o5 = MixedGraph{Bigraph => Bigraph{1 => {5}} } 2 => {} 3 => {} 4 => {} 5 => {1} 7 => {} 8 => {} Digraph => Digraph{1 => {} } 2 => {1} 3 => {1} 4 => {} 5 => {} 7 => {8} 8 => {} Graph => Graph{1 => {2, 4, 5}} 2 => {1, 3} 3 => {2, 4} 4 => {1, 3} 5 => {1} 7 => {} 8 => {} o5 : MixedGraph |
The object collateVertices is a method function.