The result $r$ is zero if and only if $f$ belongs to $A$. This function should be considered experimental.
i1 : R = QQ[x1, x2, x3]; |
i2 : A = subring {x1+x2+x3, x1*x2+x1*x3+x2*x3, x1*x2*x3, (x1-x2)*(x1-x3)*(x2-x3)} --usual invariants of A_3 o2 = subring of R o2 : Subring |
i3 : f = x1 + x2 + 2*x3 o3 = x1 + x2 + 2x3 o3 : R |
i4 : f % A o4 = p 2 o4 : QQ[p ..p ] 0 6 |
i5 : g = x1^2*x2 + x2^2*x3 + x3^2*x1 2 2 2 o5 = x1 x2 + x2 x3 + x1*x3 o5 : R |
i6 : g % A 2 2 2 o6 = p p + p p + p p 0 1 0 2 1 2 o6 : QQ[p ..p ] 0 6 |