The output of this function is a partial subalgebra basis stored in a computation object.
i1 : R = QQ[t_(1,1)..t_(3,3),MonomialOrder=>Lex]; |
i2 : M = genericMatrix(R,3,3); 3 3 o2 : Matrix R <--- R |
i3 : A = subring gens minors(2, M); |
i4 : (verifySagbi A)#"isSAGBI" o4 = false |
i5 : S = sagbi A; |
i6 : gS = gens S o6 = | t_(2,2)t_(3,3)-t_(2,3)t_(3,2) t_(2,1)t_(3,3)-t_(2,3)t_(3,1) ------------------------------------------------------------------------ t_(2,1)t_(3,2)-t_(2,2)t_(3,1) t_(1,2)t_(3,3)-t_(1,3)t_(3,2) ------------------------------------------------------------------------ t_(1,2)t_(2,3)-t_(1,3)t_(2,2) t_(1,1)t_(3,3)-t_(1,3)t_(3,1) ------------------------------------------------------------------------ t_(1,1)t_(3,2)-t_(1,2)t_(3,1) t_(1,1)t_(2,3)-t_(1,3)t_(2,1) ------------------------------------------------------------------------ t_(1,1)t_(2,2)-t_(1,2)t_(2,1) ------------------------------------------------------------------------ t_(1,1)t_(2,2)t_(3,1)t_(3,3)-t_(1,1)t_(2,3)t_(3,1)t_(3,2)-t_(1,2)t_(2,1) ------------------------------------------------------------------------ t_(3,1)t_(3,3)+t_(1,2)t_(2,3)t_(3,1)^2+t_(1,3)t_(2,1)t_(3,1)t_(3,2)-t_(1 ------------------------------------------------------------------------ ,3)t_(2,2)t_(3,1)^2 t_(1,1)t_(1,3)t_(2,2)t_(3,3)-t_(1,1)t_(1,3)t_(2,3)t ------------------------------------------------------------------------ _(3,2)-t_(1,2)t_(1,3)t_(2,1)t_(3,3)+t_(1,2)t_(1,3)t_(2,3)t_(3,1)+t_(1,3 ------------------------------------------------------------------------ )^2t_(2,1)t_(3,2)-t_(1,3)^2t_(2,2)t_(3,1) | 1 11 o6 : Matrix R <--- R |
i7 : (verifySagbi gS)#"isSAGBI" o7 = true |
Partial subalgebra bases are unavoidable since a subalgebra of a polynomial ring, endowed with some polynomial order, need not have a finite subalgebra basis. Here is a quintessential example of this phenomenon:
i8 : R=QQ[x,y]; |
i9 : A = subring matrix{{x+y,x*y,x*y^2}}; |
i10 : gens sagbi(A,Limit=>3) o10 = | x+y xy xy2 | 1 3 o10 : Matrix R <--- R |
i11 : gens sagbi(A,Limit=>10) o11 = | x+y xy xy2 xy3 xy4 xy5 xy6 xy7 xy8 xy9 | 1 10 o11 : Matrix R <--- R |
Nevertheless, a finite subalgebra basis can be computed in many cases.
The object sagbi is a method function with options.