Given a radical ideal I and an integer $n$, this method returns true if and only if $I^n=I^{(n)}$. This method circumvents computing the symbolic powers in most cases, by first testing the bigHeight of $I^n$
i1 : B = QQ[x,y,z]; |
i2 : f = map(QQ[t],B,{t^3,t^4,t^5}) 3 4 5 o2 = map (QQ[t], B, {t , t , t }) o2 : RingMap QQ[t] <--- B |
i3 : I = ker f; o3 : Ideal of B |
i4 : isSymbolicEqualOrdinary(I,2) o4 = false |
The object isSymbolicEqualOrdinary is a method function.