Given an ideal $I$ and integer $m$, this method returns the size of a minimal generating set for the $m$-th symbolic power of $I$ modulo $I^m$.
i1 : R = QQ[x,y,z] o1 = R o1 : PolynomialRing |
i2 : I = ideal(x*y,x*z,y*z); o2 : Ideal of R |
i3 : symbolicDefect(I,2) o3 = 1 |
The object symbolicDefect is a method function with options.