next | previous | forward | backward | up | top | index | toc | Macaulay2 website
SymbolicPowers :: symbolicPower

symbolicPower -- computes the symbolic power of an ideal.

Synopsis

Description

Given an ideal $I$ and an integer $n$, this method returns the $n$-th symbolic power of $I$. Various algorithms are used, in the following order:

1. If $I$ is squarefree monomial ideal, intersects the powers of the associated primes of $I$;

2. If $I$ is monomial ideal, but not squarefree, takes an irredundant primary decomposition of $I$ and intersects the powers of those ideals;

3. If $I$ is a saturated homogeneous ideal in a polynomial ring whose height is one less than the dimension of the ring, returns the saturation of $I^n$;

4. If $I$ is an ideal with only degree one primary components, intersects the powers of the primary components of I.

5. If all the associated primes of $I$ have the same height, computes a primary decomposition of $I^n$ and intersects the components with radical $I$;

6. If all else fails, compares the radicals oyf a primary decomposition of $I^n$ with the associated primes of $I$, and intersects the components corresponding to minimal primes.

i1 : B = QQ[x,y,z];
i2 : f = map(QQ[t],B,{t^3,t^4,t^5})

                      3   4   5
o2 = map (QQ[t], B, {t , t , t })

o2 : RingMap QQ[t] <--- B
i3 : I = ker f;

o3 : Ideal of B
i4 : symbolicPower(I,2)

             4       2     2 2   2 3    3       2 2      3   3 2    4     3 
o4 = ideal (y  - 2x*y z + x z , x y  - x y*z - y z  + x*z , x y  - x z - y z
     ------------------------------------------------------------------------
            2   5      3     2       3
     + x*y*z , x  + x*y  - 3x y*z + z )

o4 : Ideal of B

When computing symbolic powers of a quasi-homogeneous ideal, the method runs faster if the ideal is changed to be homogeneous.

i5 : P = ker map(QQ[t],QQ[x,y,z],{t^3,t^4,t^5})

             2         2     2   3
o5 = ideal (y  - x*z, x y - z , x  - y*z)

o5 : Ideal of QQ[x..z]
i6 : isHomogeneous P

o6 = false
i7 : time symbolicPower(P,4);
     -- used 0.238965 seconds

o7 : Ideal of QQ[x..z]
i8 : Q = ker map(QQ[t],QQ[x,y,z, Degrees => {3,4,5}],{t^3,t^4,t^5})

             2         3         2     2
o8 = ideal (y  - x*z, x  - y*z, x y - z )

o8 : Ideal of QQ[x..z]
i9 : isHomogeneous Q

o9 = true
i10 : time symbolicPower(Q,4);
     -- used 0.0930434 seconds

o10 : Ideal of QQ[x..z]

See also

Ways to use symbolicPower :

For the programmer

The object symbolicPower is a method function with options.