This function computes the $e^{th}$ truncation of the unique non-terminating $p$-adic expansion of a positive rational number $r$.
i1 : adicTruncation(5, 2, 1/100) o1 = 0 o1 : QQ |
i2 : adicTruncation(5, 4, 1/100) 6 o2 = --- 625 o2 : QQ |
i3 : adicTruncation(5, 5, 1/1000) 3 o3 = ---- 3125 o3 : QQ |
If $r = 0$, adicTruncation returns zero.
i4 : adicTruncation(4, 2, 0) o4 = 0 |
If a list $L$ of nonnegative rational numbers is passed, adicTruncation(p, e, L) returns a list containing the $e^{th}$ truncations (base $p$) of those numbers.
i5 : adicTruncation(5, 5, {1/100, 1/1000}) 31 3 o5 = {----, ----} 3125 3125 o5 : List |
The object adicTruncation is a method function.