TestIdeals : Index
-
adicDigit -- compute a digit of the non-terminating expansion of a number in the unit interval in a given base
-
adicDigit(ZZ,ZZ,List) -- compute a digit of the non-terminating expansion of a number in the unit interval in a given base
-
adicDigit(ZZ,ZZ,QQ) -- compute a digit of the non-terminating expansion of a number in the unit interval in a given base
-
adicDigit(ZZ,ZZ,ZZ) -- compute a digit of the non-terminating expansion of a number in the unit interval in a given base
-
adicExpansion -- compute adic expansion
-
adicExpansion(ZZ,ZZ) -- compute adic expansion
-
adicExpansion(ZZ,ZZ,QQ) -- compute adic expansion
-
adicExpansion(ZZ,ZZ,ZZ) -- compute adic expansion
-
adicTruncation -- truncation of a non-terminating adic expansion
-
adicTruncation(ZZ,ZZ,List) -- truncation of a non-terminating adic expansion
-
adicTruncation(ZZ,ZZ,QQ) -- truncation of a non-terminating adic expansion
-
adicTruncation(ZZ,ZZ,ZZ) -- truncation of a non-terminating adic expansion
-
ascendIdeal -- find the smallest ideal containing a given ideal which is compatible with a given Cartier linear map
-
ascendIdeal(...,AscentCount=>...) -- find the smallest ideal containing a given ideal which is compatible with a given Cartier linear map
-
ascendIdeal(...,FrobeniusRootStrategy=>...) -- find the smallest ideal containing a given ideal which is compatible with a given Cartier linear map
-
ascendIdeal(ZZ,List,List,Ideal) -- find the smallest ideal containing a given ideal which is compatible with a given Cartier linear map
-
ascendIdeal(ZZ,RingElement,Ideal) -- find the smallest ideal containing a given ideal which is compatible with a given Cartier linear map
-
ascendIdeal(ZZ,ZZ,RingElement,Ideal) -- find the smallest ideal containing a given ideal which is compatible with a given Cartier linear map
-
ascendModule -- find the smallest submodule of free module containing a given submodule which is compatible with a given Cartier linear map
-
ascendModule(ZZ,Matrix,Matrix) -- find the smallest submodule of free module containing a given submodule which is compatible with a given Cartier linear map
-
ascendModule(ZZ,Module,Matrix) -- find the smallest submodule of free module containing a given submodule which is compatible with a given Cartier linear map
-
AscentCount -- an option for ascendIdeal
-
AssumeCM -- an option to assume a ring is Cohen-Macaulay
-
AssumeDomain -- an option to assume a ring is a domain
-
AssumeNormal -- an option to assume a ring is normal
-
AssumeReduced -- an option to assume a ring is reduced
-
AtOrigin -- an option used to specify whether to only work locally
-
CanonicalIdeal -- an option to specify that a certain ideal be used as the canonical ideal
-
canonicalIdeal -- produce an ideal isomorphic to the canonical module of a ring
-
canonicalIdeal(...,Attempts=>...) -- produce an ideal isomorphic to the canonical module of a ring
-
canonicalIdeal(Ring) -- produce an ideal isomorphic to the canonical module of a ring
-
CanonicalStrategy -- an option for isFInjective
-
compatibleIdeals -- find all prime ideals compatible with a Frobenius near-splitting
-
compatibleIdeals(...,FrobeniusRootStrategy=>...) -- find all prime ideals compatible with a Frobenius near-splitting
-
compatibleIdeals(RingElement) -- find all prime ideals compatible with a Frobenius near-splitting
-
CurrentRing -- an option to specify that a certain ring is used
-
decomposeFraction -- decompose a rational number
-
decomposeFraction(...,NoZeroC=>...) -- decompose a rational number
-
decomposeFraction(ZZ,QQ) -- decompose a rational number
-
decomposeFraction(ZZ,ZZ) -- decompose a rational number
-
DepthOfSearch -- an option to specify how hard to search for something
-
descendIdeal -- finds the maximal F-pure Cartier submodule of an ideal viewed as a Cartier module
-
descendIdeal(...,FrobeniusRootStrategy=>...) -- finds the maximal F-pure Cartier submodule of an ideal viewed as a Cartier module
-
descendIdeal(ZZ,List,List,Ideal) -- finds the maximal F-pure Cartier submodule of an ideal viewed as a Cartier module
-
floorLog -- floor of a logarithm
-
floorLog(Number,Number) -- floor of a logarithm
-
FPureModule -- compute the submodule of the canonical module stable under the image of the trace of Frobenius
-
FPureModule(...,CanonicalIdeal=>...) -- compute the submodule of the canonical module stable under the image of the trace of Frobenius
-
FPureModule(...,CurrentRing=>...) -- compute the submodule of the canonical module stable under the image of the trace of Frobenius
-
FPureModule(...,FrobeniusRootStrategy=>...) -- compute the submodule of the canonical module stable under the image of the trace of Frobenius
-
FPureModule(...,GeneratorList=>...) -- compute the submodule of the canonical module stable under the image of the trace of Frobenius
-
FPureModule(List,List) -- compute the submodule of the canonical module stable under the image of the trace of Frobenius
-
FPureModule(Number,RingElement) -- compute the submodule of the canonical module stable under the image of the trace of Frobenius
-
FPureModule(Ring) -- compute the submodule of the canonical module stable under the image of the trace of Frobenius
-
frobenius -- compute a Frobenius power of an ideal or a matrix
-
frobenius(...,FrobeniusRootStrategy=>...) -- compute a Frobenius power of an ideal or a matrix
-
frobeniusPower -- compute a (generalized) Frobenius power of an ideal
-
frobeniusPower(...,FrobeniusPowerStrategy=>...) -- compute a (generalized) Frobenius power of an ideal
-
frobeniusPower(...,FrobeniusRootStrategy=>...) -- compute a (generalized) Frobenius power of an ideal
-
frobeniusPower(QQ,Ideal) -- compute a (generalized) Frobenius power of an ideal
-
frobeniusPower(ZZ,Ideal) -- compute a (generalized) Frobenius power of an ideal
-
FrobeniusPowerStrategy -- an option for frobeniusPower
-
frobeniusPreimage -- finds the ideal of elements mapped into a given ideal, under all $p^{-e}$-linear maps
-
frobeniusPreimage(ZZ,Ideal) -- finds the ideal of elements mapped into a given ideal, under all $p^{-e}$-linear maps
-
frobeniusRoot -- compute a Frobenius root
-
frobeniusRoot(...,FrobeniusRootStrategy=>...) -- compute a Frobenius root
-
frobeniusRoot(ZZ,Ideal) -- compute a Frobenius root
-
frobeniusRoot(ZZ,List,List) -- compute a Frobenius root
-
frobeniusRoot(ZZ,List,List,Ideal) -- compute a Frobenius root
-
frobeniusRoot(ZZ,Matrix) -- compute a Frobenius root
-
frobeniusRoot(ZZ,Module) -- compute a Frobenius root
-
frobeniusRoot(ZZ,MonomialIdeal) -- compute a Frobenius root
-
frobeniusRoot(ZZ,ZZ,Ideal) -- compute a Frobenius root
-
frobeniusRoot(ZZ,ZZ,RingElement) -- compute a Frobenius root
-
frobeniusRoot(ZZ,ZZ,RingElement,Ideal) -- compute a Frobenius root
-
FrobeniusRootStrategy -- an option for various functions
-
frobeniusTraceOnCanonicalModule -- find an element of a polynomial ring that determines the Frobenius trace on the canonical module of a quotient of that ring
-
frobeniusTraceOnCanonicalModule(Ideal,Ideal) -- find an element of a polynomial ring that determines the Frobenius trace on the canonical module of a quotient of that ring
-
GeneratorList -- an option to specify that a certain list of elements is used to describe a Cartier action
-
isCohenMacaulay -- whether a ring is Cohen-Macaulay
-
isCohenMacaulay(...,AtOrigin=>...) -- whether a ring is Cohen-Macaulay
-
isCohenMacaulay(Ring) -- whether a ring is Cohen-Macaulay
-
isFInjective -- whether a ring is F-injective
-
isFInjective(...,AssumeCM=>...) -- whether a ring is F-injective
-
isFInjective(...,AssumeNormal=>...) -- whether a ring is F-injective
-
isFInjective(...,AssumeReduced=>...) -- whether a ring is F-injective
-
isFInjective(...,AtOrigin=>...) -- whether a ring is F-injective
-
isFInjective(...,CanonicalStrategy=>...) -- whether a ring is F-injective
-
isFInjective(...,FrobeniusRootStrategy=>...) -- whether a ring is F-injective
-
isFInjective(Ring) -- whether a ring is F-injective
-
isFPure -- whether a ring is F-pure
-
isFPure(...,AtOrigin=>...) -- whether a ring is F-pure
-
isFPure(...,FrobeniusRootStrategy=>...) -- whether a ring is F-pure
-
isFPure(Ideal) -- whether a ring is F-pure
-
isFPure(Ring) -- whether a ring is F-pure
-
isFRational -- whether a ring is F-rational
-
isFRational(...,AssumeCM=>...) -- whether a ring is F-rational
-
isFRational(...,AssumeDomain=>...) -- whether a ring is F-rational
-
isFRational(...,AtOrigin=>...) -- whether a ring is F-rational
-
isFRational(...,FrobeniusRootStrategy=>...) -- whether a ring is F-rational
-
isFRational(Ring) -- whether a ring is F-rational
-
isFRegular -- whether a ring or pair is strongly F-regular
-
isFRegular(...,AssumeDomain=>...) -- whether a ring or pair is strongly F-regular
-
isFRegular(...,AtOrigin=>...) -- whether a ring or pair is strongly F-regular
-
isFRegular(...,DepthOfSearch=>...) -- whether a ring or pair is strongly F-regular
-
isFRegular(...,FrobeniusRootStrategy=>...) -- whether a ring or pair is strongly F-regular
-
isFRegular(...,MaxCartierIndex=>...) -- whether a ring or pair is strongly F-regular
-
isFRegular(...,QGorensteinIndex=>...) -- whether a ring or pair is strongly F-regular
-
isFRegular(List,List) -- whether a ring or pair is strongly F-regular
-
isFRegular(Number,RingElement) -- whether a ring or pair is strongly F-regular
-
isFRegular(Ring) -- whether a ring or pair is strongly F-regular
-
Katzman -- a valid value for the option CanonicalStrategy
-
MaxCartierIndex -- an option to specify the maximum number to consider when computing the Cartier index of a divisor
-
MonomialBasis -- a valid value for the option FrobeniusRootStrategy
-
multiplicativeOrder -- multiplicative order of an integer modulo another
-
multiplicativeOrder(ZZ,ZZ) -- multiplicative order of an integer modulo another
-
Naive -- a valid value for the option FrobeniusPowerStrategy
-
NoZeroC -- an option for decomposeFraction
-
parameterTestIdeal -- compute the parameter test ideal of a Cohen-Macaulay ring
-
parameterTestIdeal(...,FrobeniusRootStrategy=>...) -- compute the parameter test ideal of a Cohen-Macaulay ring
-
parameterTestIdeal(Ring) -- compute the parameter test ideal of a Cohen-Macaulay ring
-
QGorensteinGenerator -- find an element representing the Frobenius trace map of a Q-Gorenstein ring
-
QGorensteinGenerator(Ring) -- find an element representing the Frobenius trace map of a Q-Gorenstein ring
-
QGorensteinGenerator(ZZ,Ring) -- find an element representing the Frobenius trace map of a Q-Gorenstein ring
-
QGorensteinIndex -- an option to specify the index of the canonical divisor, if known
-
Safe -- a valid value for the option FrobeniusPowerStrategy
-
Substitution -- a valid value for the option FrobeniusRootStrategy
-
testElement -- find a test element of a ring
-
testElement(...,AssumeDomain=>...) -- find a test element of a ring
-
testElement(Ring) -- find a test element of a ring
-
testIdeal -- compute a test ideal in a Q-Gorenstein ring
-
testIdeal(...,AssumeDomain=>...) -- compute a test ideal in a Q-Gorenstein ring
-
testIdeal(...,FrobeniusRootStrategy=>...) -- compute a test ideal in a Q-Gorenstein ring
-
testIdeal(...,MaxCartierIndex=>...) -- compute a test ideal in a Q-Gorenstein ring
-
testIdeal(...,QGorensteinIndex=>...) -- compute a test ideal in a Q-Gorenstein ring
-
testIdeal(List,List) -- compute a test ideal in a Q-Gorenstein ring
-
testIdeal(Number,RingElement) -- compute a test ideal in a Q-Gorenstein ring
-
testIdeal(Ring) -- compute a test ideal in a Q-Gorenstein ring
-
TestIdeals -- a package for calculations of singularities in positive characteristic
-
testModule -- find the parameter test module of a reduced ring
-
testModule(...,AssumeDomain=>...) -- find the parameter test module of a reduced ring
-
testModule(...,CanonicalIdeal=>...) -- find the parameter test module of a reduced ring
-
testModule(...,CurrentRing=>...) -- find the parameter test module of a reduced ring
-
testModule(...,FrobeniusRootStrategy=>...) -- find the parameter test module of a reduced ring
-
testModule(...,GeneratorList=>...) -- find the parameter test module of a reduced ring
-
testModule(List,List) -- find the parameter test module of a reduced ring
-
testModule(Number,RingElement) -- find the parameter test module of a reduced ring
-
testModule(Ring) -- find the parameter test module of a reduced ring